Suppr超能文献

用于阐明成核与生长耦合的钙钛矿纳米晶体结晶的单粒子荧光成像。

Single particle fluorescence imaging of perovskite nanocrystal crystallization for illustrating coupled nucleation-and-growth.

作者信息

Liu Lige, Dong Dashan, Long Zhiwei, Wei Wanxue, Sun Chang, Liu Wei, Huang Xiaoshuai, Chen Liangyi, Zhong Haizheng, Shi Kebin

机构信息

State Key Laboratory of Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.

Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5664. doi: 10.1038/s41467-025-60826-x.

Abstract

Because of the lack of spatiotemporal characterization techniques, it has been of great challenge to investigate the crystallization of nanocrystals. With a high-speed structured illumination super-resolution fluorescence microscopy (SIM), we hereby report an in situ fluorescence imaging technique to monitor the crystallization of perovskite nanocrystals at single-particle level. By correlating the fluorescence intensity with particle size, we illustrate the coupled nucleation-and-growth of perovskite nanocrystals in polymer matrix. The temporal fluorescence intensity analysis of individual nanocrystals reveals the diffusion-controlled growth process with a fast growth at the beginning followed by a slow growth. The analysis of ensemble nanocrystals illustrates the evolution of nucleation rate with the change of precursor concentrations. We further analyze the Gibbs free energy fluctuation of couple nucleation-and-growth. The growth free energy dominates in the continuous nucleation of perovskite nanocrystals, which accounts for the narrow size distribution. In comparison with LaMer model, the coupled nucleation-and-growth provides an alternative model to fabricate narrow sized nanocrystals.

摘要

由于缺乏时空表征技术,研究纳米晶体的结晶过程面临巨大挑战。借助高速结构光照超分辨率荧光显微镜(SIM),我们在此报告一种原位荧光成像技术,用于在单粒子水平监测钙钛矿纳米晶体的结晶过程。通过将荧光强度与粒径相关联,我们阐明了钙钛矿纳米晶体在聚合物基质中的成核与生长耦合过程。对单个纳米晶体的时间荧光强度分析揭示了扩散控制的生长过程,即开始时快速生长,随后缓慢生长。对整体纳米晶体的分析表明了成核速率随前驱体浓度变化的演变情况。我们进一步分析了成核与生长耦合的吉布斯自由能波动。生长自由能在钙钛矿纳米晶体的连续成核中占主导地位,这解释了其窄尺寸分布。与拉默模型相比,成核与生长耦合提供了一种制备窄尺寸纳米晶体的替代模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ef/12215261/4dbb34302982/41467_2025_60826_Fig1_HTML.jpg

相似文献

2
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
3
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
4
Incentives for preventing smoking in children and adolescents.
Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2015 Dec 22;2015(12):CD011841. doi: 10.1002/14651858.CD011841.pub2.
8
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2025 Jun 16;6(6):CD011841. doi: 10.1002/14651858.CD011841.pub3.
10
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.

本文引用的文献

1
In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications.
Adv Mater. 2025 Jun;37(25):e2412276. doi: 10.1002/adma.202412276. Epub 2024 Nov 17.
3
Toward the Controlled Synthesis of Lead Halide Perovskite Nanocrystals.
ACS Nano. 2023 Sep 26;17(18):17600-17609. doi: 10.1021/acsnano.3c05609. Epub 2023 Sep 8.
4
Growth of Lead Halide Perovskite Nanocrystals: Still in Mystery.
ACS Phys Chem Au. 2022 Feb 21;2(4):268-276. doi: 10.1021/acsphyschemau.2c00001. eCollection 2022 Jul 27.
5
Growth and Self-Assembly of CsPbBr Nanocrystals in the TOPO/PbBr Synthesis as Seen with X-ray Scattering.
Nano Lett. 2023 Jan 25;23(2):667-676. doi: 10.1021/acs.nanolett.2c04532. Epub 2023 Jan 6.
6
Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots.
Science. 2022 Sep 23;377(6613):1406-1412. doi: 10.1126/science.abq3616. Epub 2022 Sep 8.
7
Semiconductor quantum dots: Technological progress and future challenges.
Science. 2021 Aug 6;373(6555). doi: 10.1126/science.aaz8541. Epub 2021 Aug 5.
8
Nanocrystal Quantum Dots: From Discovery to Modern Development.
ACS Nano. 2021 Apr 27;15(4):6192-6210. doi: 10.1021/acsnano.1c01399. Epub 2021 Apr 8.
9
Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis.
Nano Lett. 2021 Mar 24;21(6):2487-2496. doi: 10.1021/acs.nanolett.0c04813. Epub 2021 Mar 4.
10
Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission.
Sci Adv. 2020 Sep 23;6(39). doi: 10.1126/sciadv.abc4959. Print 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验