Chen Jilei, Xu Mingran, Wang Jinlong, Wagner Kai, Sheng Lutong, Jia Hao, Wei Weiwei, Zhang Han, Zhang Yuelin, Wang Hanchen, Yuan Rundong, Hamdi Mohammad, Liu Song, Chen Tingyong, Maletinsky Patrick, Ansermet Jean-Philippe, Yu Dapeng, Grundler Dirk, Yu Haiming
International Quantum Academy, Shenzhen, China.
Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Commun. 2025 Jul 1;16(1):5794. doi: 10.1038/s41467-025-60883-2.
Antiferromagnetic spin textures, compared to their ferromagnetic counterparts, innately possess high stability with respect to external disturbance and high-frequency dynamics compatible with ultrafast information processing. However, deterministic creation and reconfigurable switching of different antiferromagnetic spin textures have not been realized. Here, we demonstrate room-temperature deterministic switching between three antiferromagnetic textures identified by characteristically different high frequency dynamics in single-crystal hematite (α-Fe2O3). All three states are found to be remarkably stable and fully controllable, as confirmed by 1000 switching cycles and spatially resolved spectroscopy and they may be created by local magnetization switching in the nonlinear excitation regime. The switching to the following stable state requires only one microwave pulse (100 ns) with ultralow energy consumption (1 nJ). Our Brillouin light scattering (BLS) microscopy data reinforces that the detected magnon modes are associated to excitations of domain walls and circular spin textures. The progressive switching between the three distinct states imitates the weighted sum operation in neuromorphic computing, suggesting the possibility of using spin textures in antiferromagnets for information processing.
与铁磁自旋纹理相比,反铁磁自旋纹理天生就具有对外部干扰的高稳定性以及与超快信息处理兼容的高频动力学特性。然而,不同反铁磁自旋纹理的确定性创建和可重构切换尚未实现。在此,我们展示了在室温下,单晶赤铁矿(α-Fe₂O₃)中由特征性不同的高频动力学所识别的三种反铁磁纹理之间的确定性切换。通过1000次切换循环以及空间分辨光谱证实,所有三种状态都非常稳定且完全可控,并且它们可以通过非线性激发 regime 中的局部磁化切换来创建。切换到下一个稳定状态仅需一个微波脉冲(100 ns),且能量消耗超低(1 nJ)。我们的布里渊光散射(BLS)显微镜数据进一步证实,检测到的磁振子模式与畴壁和圆形自旋纹理的激发相关。这三种不同状态之间的渐进切换模仿了神经形态计算中的加权和运算,表明在反铁磁体中使用自旋纹理进行信息处理的可能性。