Boventer I, Simensen H T, Anane A, Kläui M, Brataas A, Lebrun R
Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
Phys Rev Lett. 2021 May 7;126(18):187201. doi: 10.1103/PhysRevLett.126.187201.
We study theoretically and experimentally the spin pumping signals induced by the resonance of canted antiferromagnets with Dzyaloshinskii-Moriya interaction and demonstrate that they can generate easily observable inverse spin-Hall voltages. Using a bilayer of hematite/heavy metal as a model system, we measure at room temperature the antiferromagnetic resonance and an associated inverse spin-Hall voltage, as large as in collinear antiferromagnets. As expected for coherent spin pumping, we observe that the sign of the inverse spin-Hall voltage provides direct information about the mode handedness as deduced by comparing hematite, chromium oxide and the ferrimagnet yttrium-iron garnet. Our results open new means to generate and detect spin currents at terahertz frequencies by functionalizing antiferromagnets with low damping and canted moments.
我们从理论和实验上研究了具有Dzyaloshinskii-Moriya相互作用的倾斜反铁磁体共振所诱导的自旋泵浦信号,并证明它们能够产生易于观测的逆自旋霍尔电压。使用赤铁矿/重金属双层作为模型系统,我们在室温下测量了反铁磁共振以及与之相关的逆自旋霍尔电压,其大小与共线反铁磁体中的相当。正如相干自旋泵浦所预期的那样,通过比较赤铁矿、氧化铬和铁磁体钇铁石榴石,我们观察到逆自旋霍尔电压的符号提供了有关模式手性的直接信息。我们的结果开辟了新的途径,通过使具有低阻尼和倾斜磁矩的反铁磁体功能化来产生和检测太赫兹频率下的自旋电流。