Kamal Ahmed, El-Kamchochi H A, El-Fahar Adel, Hagras Esam A A
Engineering Department, Air Defense College, Alexandria University, Alexandria, Egypt.
Electrical Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
Sci Rep. 2025 Jul 1;15(1):21566. doi: 10.1038/s41598-025-00334-6.
Secure image transmission requires robust algorithms to ensure authentication, integrity, non-repudiation, and confidentiality. Addressing emerging security challenges necessitates continuous advancements in cryptographic design. This paper presents an authenticated and encrypted image scheme that achieves all essential security services. While Elliptic curve cryptography (ECC) remains a fundamental component of recent encryption schemes, it is vulnerable to side-channel and inherent ECC-specific attacks. To overcome these vulnerabilities, the proposed scheme replaces ECC with Conic curve cryptography (CCC), offering enhanced security and performance. The integration of complex number theory with CCC enables a secure complex key exchange and incorporates a robust Iterative conic curve pseudorandom number generator (ICC-PRNG) to thwart all known attack types. The system is a public key cryptosystem based on multi-hard problems, including the Gaussian conic curve integer factorization problem (GCC-IFP), Conic curve discrete logarithm problem (CC-DLP), and Conic curve integer factorization problem (CC-IFP), combined with XOR operations for image encryption. Additionally, the scheme introduces a novel complex digital signature for encrypted images, leveraging complex arithmetic to enhance security. Experimental results demonstrate high entropy 7.999, correlation near 0.0001, key space [Formula: see text], and average PSNR of 8.51 dB, ensuring resilience against brute-force and statistical attacks. Additionally, the scheme achieves encryption times of 25 ms, making it suitable for real-time applications. Security analysis validates robustness against various attacks, with NIST statistical tests confirming ICC-PRNG effectiveness. By leveraging complex numbers over conic curves, the proposed method improves security and computational efficiency, establishing it as a promising solution for advanced image encryption.
安全的图像传输需要强大的算法来确保认证、完整性、不可否认性和保密性。应对新出现的安全挑战需要在密码设计方面不断取得进展。本文提出了一种经过认证和加密的图像方案,该方案实现了所有基本的安全服务。虽然椭圆曲线密码学(ECC)仍然是近期加密方案的一个基本组成部分,但它容易受到边信道攻击和ECC特有的固有攻击。为了克服这些漏洞,所提出的方案用圆锥曲线密码学(CCC)取代了ECC,提供了更高的安全性和性能。复数理论与CCC的集成实现了安全的复数密钥交换,并结合了强大的迭代圆锥曲线伪随机数生成器(ICC-PRNG)来抵御所有已知的攻击类型。该系统是一个基于多难题的公钥密码系统,包括高斯圆锥曲线整数分解问题(GCC-IFP)、圆锥曲线离散对数问题(CC-DLP)和圆锥曲线整数分解问题(CC-IFP),并结合异或运算进行图像加密。此外,该方案还为加密图像引入了一种新颖的复数数字签名,利用复数运算来增强安全性。实验结果表明,该方案具有7.999的高熵、接近0.0001的相关性、[公式:见原文]的密钥空间以及8.51 dB的平均峰值信噪比,确保了对暴力攻击和统计攻击具有抵抗力。此外,该方案的加密时间为25毫秒,适用于实时应用。安全分析验证了该方案对各种攻击的鲁棒性,美国国家标准与技术研究院(NIST)的统计测试证实了ICC-PRNG的有效性。通过利用圆锥曲线上的复数,所提出的方法提高了安全性和计算效率,使其成为先进图像加密的一个有前途的解决方案。