Hazzazi Mohammad Mazyad, Rehman Mujeeb Ur, Shafique Arslan, Aljaedi Amer, Bassfar Zaid, Usman Aminu Bello
Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia.
Cyber Technology Institute, School of Computer Science and Informatics, De Montfort University, Leicester, LE1 9BH, UK.
Sci Rep. 2024 May 29;14(1):12277. doi: 10.1038/s41598-024-62260-3.
In recent years, numerous image encryption schemes have been developed that demonstrate different levels of effectiveness in terms of robust security and real-time applications. While a few of them outperform in terms of robust security, others perform well for real-time applications where less processing time is required. Balancing these two aspects poses a challenge, aiming to achieve efficient encryption without compromising security. To address this challenge, the proposed research presents a robust data security approach for encrypting grayscale images, comprising five key phases. The first and second phases of the proposed encryption framework are dedicated to the generation of secret keys and the confusion stage, respectively. While the level-1, level-2, and level-2 diffusions are performed in phases 3, 4, and 5, respectively, The proposed approach begins with secret key generation using chaotic maps for the initial pixel scrambling in the plaintext image, followed by employing the Fibonacci Transformation (FT) for an additional layer of pixel shuffling. To enhance security, Tribonacci Transformation (TT) creates level-1 diffusion in the permuted image. Level-2 diffusion is introduced to further strengthen the diffusion within the plaintext image, which is achieved by decomposing the diffused image into eight-bit planes and implementing XOR operations with corresponding bit planes that are extracted from the key image. After that, the discrete wavelet transform (DWT) is employed to develop secondary keys. The DWT frequency sub-band (high-frequency sub-band) is substituted using the substitution box process. This creates further diffusion (level 3 diffusion) to make it difficult for an attacker to recover the plaintext image from an encrypted image. Several statistical tests, including mean square error analysis, histogram variance analysis, entropy assessment, peak signal-to-noise ratio evaluation, correlation analysis, key space evaluation, and key sensitivity analysis, demonstrate the effectiveness of the proposed work. The proposed encryption framework achieves significant statistical values, with entropy, correlation, energy, and histogram variance values standing at 7.999, 0.0001, 0.0156, and 6458, respectively. These results contribute to its robustness against cyberattacks. Moreover, the processing time of the proposed encryption framework is less than one second, which makes it more suitable for real-world applications. A detailed comparative analysis with the existing methods based on chaos, DWT, Tribonacci transformation (TT), and Fibonacci transformation (FT) reveals that the proposed encryption scheme outperforms the existing ones.
近年来,已经开发出了许多图像加密方案,这些方案在强大的安全性和实时应用方面展现出了不同程度的有效性。虽然其中一些在强大的安全性方面表现出色,但其他方案在需要较少处理时间的实时应用中表现良好。平衡这两个方面带来了挑战,目标是在不损害安全性的情况下实现高效加密。为了应对这一挑战,本研究提出了一种用于加密灰度图像的强大数据安全方法,该方法包括五个关键阶段。所提出的加密框架的第一阶段和第二阶段分别致力于秘密密钥的生成和混淆阶段。而一级、二级和三级扩散分别在第三、第四和第五阶段进行。所提出的方法首先使用混沌映射生成秘密密钥,用于对明文图像进行初始像素置乱,随后采用斐波那契变换(FT)进行额外的像素洗牌层。为了增强安全性,三阶斐波那契变换(TT)在置乱后的图像中创建一级扩散。引入二级扩散以进一步加强明文图像内的扩散,这是通过将扩散后的图像分解为八位平面并与从密钥图像中提取的相应位平面进行异或运算来实现的。之后,采用离散小波变换(DWT)来生成二级密钥。离散小波变换频率子带(高频子带)使用替换盒过程进行替换。这会产生进一步的扩散(三级扩散),使攻击者难以从加密图像中恢复明文图像。包括均方误差分析、直方图方差分析、熵评估、峰值信噪比评估、相关性分析、密钥空间评估和密钥敏感性分析在内的多项统计测试证明了所提出工作的有效性。所提出的加密框架取得了显著的统计值,熵、相关性、能量和直方图方差值分别为7.999、0.oooo1、0.0156和6458。这些结果有助于其抵御网络攻击的鲁棒性。此外,所提出的加密框架的处理时间不到一秒,这使其更适合实际应用。与基于混沌、离散小波变换、三阶斐波那契变换(TT)和斐波那契变换(FT)的现有方法进行的详细比较分析表明,所提出的加密方案优于现有方案。