Yang Shiqi, Gao Yuan, Zhu Yao, Zhang Li, Xie Qinlan, Lu Xuesong, Wang Fang, Zhang Zhushanying
School of Biomedical Engineering, South-Central MINZU University, Wuhan, 430074, Hubei Province, China.
Sci Rep. 2025 Jul 1;15(1):22258. doi: 10.1038/s41598-025-01228-3.
Stress is widely acknowledged as a significant contributor to health issues. Recognizing stress involves assessing an individual's physiological and psychological responses to stressors, which is crucial for human well-being. Physiological signal-based stress assessment offers greater accuracy and objectivity compared to traditional methods. To enhance stress level detection, we propose a novel approach using deep learning models that classify mental stress states (stress, baseline, amusement) based on multimodal physiological signals converted into RGB images through Gramian Summation Angular Field (GASF), Gramian Difference Angular Field (GADF), and Markov Transition Field (MTF) transformations. Experimental findings showcase the effectiveness of the proposed model, achieving an accuracy of 90.96% and an F1-score of 91.67%. The consistently high F1 scores across all categories demonstrate the model's exceptional performance. Experimental results underscore the method's effectiveness in capturing the relationship between multimodal physiological signals and stress, offering a promising tool for mental stress recognition.
压力被广泛认为是健康问题的一个重要促成因素。识别压力涉及评估个体对压力源的生理和心理反应,这对人类福祉至关重要。与传统方法相比,基于生理信号的压力评估具有更高的准确性和客观性。为了提高压力水平检测能力,我们提出了一种新颖的方法,使用深度学习模型,该模型基于通过格拉姆求和角场(GASF)、格拉姆差分角场(GADF)和马尔可夫转移场(MTF)变换转换为RGB图像的多模态生理信号对心理压力状态(压力、基线、娱乐)进行分类。实验结果表明了所提出模型的有效性,准确率达到90.96%,F1分数达到91.67%。所有类别中始终较高的F1分数证明了该模型的卓越性能。实验结果强调了该方法在捕捉多模态生理信号与压力之间关系方面的有效性,为心理压力识别提供了一个有前途的工具。