Mandal Pinak, Gottwald Georg A
University of Sydney, Sydney, Australia.
Nat Commun. 2025 Jul 1;16(1):5961. doi: 10.1038/s41467-025-61195-1.
We show how random feature maps can be used to forecast dynamical systems with excellent forecasting skill. We consider the tanh activation function and judiciously choose the internal weights in a data-driven manner such that the resulting features explore the nonlinear, non-saturated regions of the activation function. We introduce skip connections and construct a deep variant of random feature maps by combining several units. To mitigate the curse of dimensionality, we introduce localization where we learn local maps, employing conditional independence. Our modified random feature maps provide excellent forecasting skill for both single trajectory forecasts as well as long-time estimates of statistical properties, for a range of chaotic dynamical systems with dimensions up to 512. In contrast to other methods such as reservoir computers which require extensive hyperparameter tuning, we effectively need to tune only a single hyperparameter, and are able to achieve state-of-the-art forecasting skill with much smaller networks.
我们展示了如何使用随机特征映射来预测动力系统,且具有出色的预测能力。我们考虑双曲正切激活函数,并以数据驱动的方式明智地选择内部权重,以使生成的特征探索激活函数的非线性、非饱和区域。我们引入跳跃连接,并通过组合多个单元构建随机特征映射的深度变体。为了减轻维度灾难,我们引入局部化,即通过利用条件独立性来学习局部映射。对于一系列维度高达512的混沌动力系统,我们改进的随机特征映射在单轨迹预测以及统计特性的长期估计方面都提供了出色的预测能力。与其他方法(如需要大量超参数调整的回声状态网络)相比,我们实际上只需要调整一个超参数,并且能够用小得多的网络实现最先进的预测能力。