Aslyamov Timur, Sinkov Konstantin, Akhatov Iskander
Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia.
Schlumberger Moscow Research, Leningradskoe Shosse 16A/3, 125171 Moscow, Russia.
Nanomaterials (Basel). 2022 Feb 9;12(4):587. doi: 10.3390/nano12040587.
An optimal combination of power and energy characteristics is beneficial for the further progress of supercapacitors-based technologies. We develop a nanoscale dynamic electrolyte model, which describes both static capacitance and the time-dependent charging process, including the initial square-root dependency and two subsequent exponential trends. The observed charging time corresponds to one of the relaxation times of the exponential regimes and significantly depends on the pore size. Additionally, we find analytical expressions providing relations of the time scales to the electrode's parameters, applied potential, and the final state of the confined electrolyte. Our numerical results for the charging regimes agree with published computer simulations, and estimations of the charging times coincide with the experimental values.
功率和能量特性的最佳组合有利于基于超级电容器的技术的进一步发展。我们开发了一种纳米级动态电解质模型,该模型描述了静态电容和随时间变化的充电过程,包括初始的平方根依赖性和随后的两种指数趋势。观察到的充电时间对应于指数区域的弛豫时间之一,并且显著取决于孔径。此外,我们找到了提供时间尺度与电极参数、施加电势以及受限电解质最终状态之间关系的解析表达式。我们对充电过程的数值结果与已发表的计算机模拟结果一致,并且充电时间的估计与实验值相符。