Yang Weiyuan, Wang Xiaolin, Chen Guangwei, Wen Jianming, Kong Dexing, Zhang Jianfeng, Ge Xinyang, Xu Hao, Qin Jianhua
Hangzhou Plastic Surgery Hospital, Hangzhou, 310020, China.
College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, China.
Sci Rep. 2025 Jul 2;15(1):22810. doi: 10.1038/s41598-025-05239-y.
Skin scar is a prevalent dermatological concern that impacts both aesthetic appearance and psychological well-being, making precise delineation of scar tissue essential for clinical treatment. To address the challenge of scar image segmentation, this study introduces an innovative deep learning framework integrating CNN and Swin Transformer architectures. The proposed model leverages a multi-scale feature fusion module to combine hierarchical representations from both backbones, while a novel multi-pooling channel-spatial attention mechanism enhances feature refinement during skip connections. Comprehensive experiments demonstrate the model's superior performance in scar segmentation, achieving metrics of 96.01% Accuracy, 77.43% Precision, 90.17% Recall, 71.38% Jaccard Index, and 83.21% Dice Coefficient, which compare favorably with mainstream methods, and our model performs well in all metrics, highlighting its potential for clinical adoption in scar analysis.
皮肤瘢痕是一个普遍存在的皮肤科问题,它会影响美观和心理健康,因此精确勾勒瘢痕组织对于临床治疗至关重要。为了应对瘢痕图像分割的挑战,本研究引入了一种创新的深度学习框架,该框架集成了卷积神经网络(CNN)和Swin Transformer架构。所提出的模型利用多尺度特征融合模块来结合两个主干网络的层次表示,同时一种新颖的多池化通道空间注意力机制在跳跃连接过程中增强了特征细化。综合实验证明了该模型在瘢痕分割方面的卓越性能,准确率达到96.01%,精确率为77.43%,召回率为90.17%,杰卡德指数为71.38%,骰子系数为83.21%,与主流方法相比具有优势,并且我们的模型在所有指标上都表现良好,突出了其在瘢痕分析临床应用中的潜力。