Suppr超能文献

双任务视觉Transformer 用于快速准确的脑出血 CT 图像分类。

Dual-task vision transformer for rapid and accurate intracerebral hemorrhage CT image classification.

机构信息

Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.

Department of Neurology, Yulin Hospital,The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, Shaanxi, China.

出版信息

Sci Rep. 2024 Nov 22;14(1):28920. doi: 10.1038/s41598-024-79090-y.

Abstract

Intracerebral hemorrhage (ICH) is a severe and sudden medical condition caused by the rupture of blood vessels in the brain, leading to permanent damage to brain tissue and often resulting in functional disabilities or death in patients. Diagnosis and analysis of ICH typically rely on brain CT imaging. Given the urgency of ICH conditions, early treatment is crucial, necessitating rapid analysis of CT images to formulate tailored treatment plans. However, the complexity of ICH CT images and the frequent scarcity of specialist radiologists pose significant challenges. Therefore, we collect a dataset from the real world for ICH and normal classification and three types of ICH image classification based on the hemorrhage location, i.e., Deep, Subcortical, and Lobar. In addition, we propose a neural network structure, dual-task vision transformer (DTViT), for the automated classification and diagnosis of ICH images. The DTViT deploys the encoder from the Vision Transformer (ViT), employing attention mechanisms for feature extraction from CT images. The proposed DTViT framework also incorporates two multilayer perception (MLP)-based decoders to simultaneously identify the presence of ICH and classify the three types of hemorrhage locations. Experimental results demonstrate that DTViT performs well on the real-world test dataset.

摘要

脑出血 (ICH) 是一种严重且突然的疾病,由脑部血管破裂引起,导致脑组织永久性损伤,患者常因功能障碍或死亡。ICH 的诊断和分析通常依赖于脑部 CT 成像。鉴于 ICH 情况的紧迫性,早期治疗至关重要,需要快速分析 CT 图像以制定针对性的治疗计划。然而,ICH CT 图像的复杂性和专业放射科医生的频繁短缺带来了重大挑战。因此,我们从真实世界中收集了 ICH 和正常分类以及基于出血位置的 ICH 图像的三种类型的分类数据集,即 Deep、Subcortical 和 Lobar。此外,我们提出了一种用于 ICH 图像自动分类和诊断的神经网络结构,即双任务视觉转换器 (DTViT)。DTViT 采用 Vision Transformer (ViT) 的编码器,利用注意力机制从 CT 图像中提取特征。所提出的 DTViT 框架还包含两个基于多层感知器 (MLP) 的解码器,以同时识别 ICH 的存在并对三种出血位置进行分类。实验结果表明,DTViT 在真实世界的测试数据集上表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e61a/11582700/b4ca595079f0/41598_2024_79090_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验