Suppr超能文献

基于机器学习的Ti-29Nb-13Ta-4.6Zr(TNTZ)微电火花加工预测建模

Machine learning based prediction modeling of micro-EDM of Ti-29Nb-13Ta-4.6Zr (TNTZ).

作者信息

Ali Shahid, Talamona Didier, Perveen Asma

机构信息

Mechanical and Aerospace Engineering, Nazarbayev University, 010000, Astana, Kazakhstan.

出版信息

Sci Rep. 2025 Jul 1;15(1):20484. doi: 10.1038/s41598-025-05118-6.

Abstract

Although Ti-6Al-4V stands out as one of the best in biomedical, automotive, and aerospace applications due to its low density and higher corrosion resistance, the toxicity associated with Al and V elements is shifting the usage of Ti-based alloys with reduced toxic content but with more biocompatible elements (Zr, Ta, and Nb). Despite the advancements in the era of micromachining, machining these alloys with traditional machining methods is highly tedious. The present research evaluates the micromachining performance of the TNTZ (Ti-29Nb-13Ta-4.6Zr) alloy employing a tungsten carbide electrode using the µ-EDM (micro-electro-discharge-machining). The primary input parameters examined are voltage (80-130 V) and capacitance (10-400nF), with a feed rate of 0.09 mm/s during the experiments. The output responses assessed include VMR, OC, CErr, and SFR. Meanwhile, due to the complexity of the µ-EDM process, it presents significant challenges in predicting performance across different machining settings. The interactions between key process parameters, such as C and V, amplify their parametric sensitivity, making conventional simulation approaches inadequate for accurately modeling these interdependencies. To address these challenges, the latter part of this study explores machine learning techniques, particularly Multiple linear regressor (MLR), decision tree regressor (DTR), and artificial neural network (ANN) for predictive accuracy. The models are evaluated using two key performance metrics: normalized root mean squared error (NRMSE) and R-squared (R). The ANN demonstrated superior capability in handling experimental variability based on the prediction results. It has the highest R of 0.99, the lowest NRMSE of 0.0245, and the percentage of prediction error is less than 5%.

摘要

尽管Ti-6Al-4V因其低密度和较高的耐腐蚀性,在生物医学、汽车和航空航天应用领域中表现突出,但与铝和钒元素相关的毒性问题,使得人们开始转而使用有毒成分减少但生物相容性元素(锆、钽和铌)含量更高的钛基合金。尽管微加工时代取得了进步,但用传统加工方法加工这些合金非常繁琐。本研究采用碳化钨电极,通过微电火花加工(µ-EDM)评估了TNTZ(Ti-29Nb-13Ta-4.6Zr)合金的微加工性能。实验中考察的主要输入参数为电压(80-130V)和电容(10-400nF),进给速度为0.09mm/s。评估的输出响应包括VMR、OC、CErr和SFR。同时,由于µ-EDM工艺的复杂性,在预测不同加工设置下的性能时面临重大挑战。关键工艺参数(如C和V)之间的相互作用增强了它们的参数敏感性,使得传统的模拟方法不足以准确模拟这些相互依存关系。为应对这些挑战,本研究的后半部分探索了机器学习技术,特别是多元线性回归器(MLR)、决策树回归器(DTR)和人工神经网络(ANN),以提高预测精度。使用两个关键性能指标对模型进行评估:归一化均方根误差(NRMSE)和决定系数(R)。根据预测结果,ANN在处理实验变异性方面表现出卓越的能力。它的R最高为0.99,NRMSE最低为0.0245,预测误差百分比小于5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1303/12217439/9bd1d28ec2ed/41598_2025_5118_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验