文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用YOLOv8和上下文感知卷积在复杂场景中进行稳健的口罩检测。

Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutions.

作者信息

Wei Yingjie, Li Huili, He Yuanfei, Li Li, Lyu Qiongshuai, Yang Yu

机构信息

College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China.

School of Software, Pingdingshan University, Pingdingshan, 467000, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21350. doi: 10.1038/s41598-025-04768-w.


DOI:10.1038/s41598-025-04768-w
PMID:40594313
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12218034/
Abstract

Aiming to address the challenges of reduced detection accuracy in face mask applications due to mutual occlusion, lighting variations, and detection distance, this paper proposes a face mask detection algorithm tailored for complex environments. First, we construct a comprehensive face mask dataset. Then, based on the YOLOv8 architecture, we enhance the C2f module in the backbone network by incorporating depth-separable convolutions to better capture the color and texture features of the target. We also integrate the SENet attention mechanism to further optimize feature extraction efficiency. To improve the transmission of fine-grained face mask features within the network, we introduce context-aware convolutions in the Neck module, which facilitates the integration of contextual semantic information and enriches the feature details of small targets. Building on this, we design an enhanced detection head, DAM-Head, which amplifies target saliency and improves both target recognition and localization accuracy. Experimental results demonstrate that the proposed algorithm achieves a mean Average Precision (mAP) of 98.11% and a Frames Per Second (FPS) rate of 135.61 on the constructed dataset, outperforming other mainstream algorithms in both accuracy and real-time performance.

摘要

针对口罩应用中由于相互遮挡、光照变化和检测距离导致检测精度降低的挑战,本文提出了一种适用于复杂环境的口罩检测算法。首先,我们构建了一个全面的口罩数据集。然后,基于YOLOv8架构,我们通过合并深度可分离卷积来增强主干网络中的C2f模块,以更好地捕捉目标的颜色和纹理特征。我们还集成了SENet注意力机制,以进一步优化特征提取效率。为了提高网络内细粒度口罩特征的传输,我们在Neck模块中引入了上下文感知卷积,这有助于上下文语义信息的整合,并丰富小目标的特征细节。在此基础上,我们设计了一个增强检测头DAM-Head,它放大了目标显著性,提高了目标识别和定位精度。实验结果表明,该算法在构建的数据集上实现了98.11%的平均精度均值(mAP)和135.61帧每秒(FPS)的帧率,在准确性和实时性能方面均优于其他主流算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6763c7eed10e/41598_2025_4768_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/09ae2599d6fc/41598_2025_4768_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/0c09950e59cc/41598_2025_4768_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/a48ebc33a8e6/41598_2025_4768_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/2e3d65ab1078/41598_2025_4768_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/7e9076a16979/41598_2025_4768_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/37330441887c/41598_2025_4768_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/8098a72c9ac5/41598_2025_4768_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6441e9a9ab7c/41598_2025_4768_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/336f316d2033/41598_2025_4768_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6514df531534/41598_2025_4768_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6763c7eed10e/41598_2025_4768_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/09ae2599d6fc/41598_2025_4768_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/0c09950e59cc/41598_2025_4768_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/a48ebc33a8e6/41598_2025_4768_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/2e3d65ab1078/41598_2025_4768_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/7e9076a16979/41598_2025_4768_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/37330441887c/41598_2025_4768_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/8098a72c9ac5/41598_2025_4768_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6441e9a9ab7c/41598_2025_4768_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/336f316d2033/41598_2025_4768_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6514df531534/41598_2025_4768_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42da/12218034/6763c7eed10e/41598_2025_4768_Fig10_HTML.jpg

相似文献

[1]
Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutions.

Sci Rep. 2025-7-1

[2]
HGCS-Det: A Deep Learning-Based Solution for Localizing and Recognizing Household Garbage in Complex Scenarios.

Sensors (Basel). 2025-6-14

[3]
LI-YOLOv8: Lightweight small target detection algorithm for remote sensing images that combines GSConv and PConv.

PLoS One. 2025-5-23

[4]
Integrating computer vision algorithms and RFID system for identification and tracking of group-housed animals: an example with pigs.

J Anim Sci. 2024-1-3

[5]
An algorithm for road target detection of autonomous vehicles based on improved YOLOv8.

Sci Rep. 2025-7-1

[6]
SODU2-NET: a novel deep learning-based approach for salient object detection utilizing U-NET.

PeerJ Comput Sci. 2025-5-19

[7]
A Study on Real-Time Detection of Rice Diseases in Farmlands Based on Multidimensional Data Fusion.

Plant Dis. 2025-6

[8]
A novel feature extractor based on constrained cross network for detecting sleep state.

Sci Rep. 2025-7-1

[9]
DASNet a dual branch multi level attention sheep counting network.

Sci Rep. 2025-7-2

[10]
A dual-domain perception gate-controlled adaptive fusion algorithm for road crack detection.

Sci Rep. 2025-7-1

本文引用的文献

[1]
A novel DCNN-ELM hybrid framework for face mask detection.

Intell Syst Appl. 2023-2

[2]
RRFMDS: Rapid Real-Time Face Mask Detection System for Effective COVID-19 Monitoring.

SN Comput Sci. 2023

[3]
Integration of improved YOLOv5 for face mask detector and auto-labeling to generate dataset for fighting against COVID-19.

J Supercomput. 2023

[4]
A real time face mask detection system using convolutional neural network.

Multimed Tools Appl. 2022

[5]
SAI-YOLO: A Lightweight Network for Real-Time Detection of Driver Mask-Wearing Specification on Resource-Constrained Devices.

Comput Intell Neurosci. 2021

[6]
A hybrid tiny YOLO v4-SPP module based improved face mask detection vision system.

J Ambient Intell Humaniz Comput. 2023

[7]
Application of a Novel and Improved VGG-19 Network in the Detection of Workers Wearing Masks.

J Phys Conf Ser. 2020-4

[8]
Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4.

Sensors (Basel). 2021-5-8

[9]
A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic.

Measurement (Lond). 2021-1-1

[10]
Respiratory virus shedding in exhaled breath and efficacy of face masks.

Nat Med. 2020-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索