Suppr超能文献

一种基于混合微小YOLO v4-SPP模块的改进型口罩检测视觉系统。

A hybrid tiny YOLO v4-SPP module based improved face mask detection vision system.

作者信息

Kumar Akhil, Kalia Arvind, Sharma Akashdeep, Kaushal Manisha

机构信息

Department of Computer Science, Himachal Pradesh University, Shimla, India.

CSE, UIET, Panjab University, Chandigarh, India.

出版信息

J Ambient Intell Humaniz Comput. 2023;14(6):6783-6796. doi: 10.1007/s12652-021-03541-x. Epub 2021 Oct 20.

Abstract

Law offenders take advantage of face masks to conceal their identities and in the present time of the COVID-19 pandemic wearing face masks is a new norm which makes it a daunting task for the investigation agencies to identify the offenders. To address the issue of detection of people wearing face masks using surveillance cameras, we propose a novel face mask vision system that is based on an improved tiny YOLO v4 object detector. The face masks detection network of the proposed vision system is developed by integrating tiny YOLO v4 with spatial pyramid pooling (SPP) module and additional YOLO detection layer and tested and validated on a self-created face masks detection dataset consisting of more than 50,000 images. The proposed tiny YOLO v4-SPP network achieved a mAP (mean average precision) value of 64.31% on the employed dataset which was 6.6% higher than tiny YOLO v4. Specifically, for detection of the presence of a small object like a face mask on the face region, the proposed tiny YOLO v4-SPP based vision system achieved an AP (average precision) of 84.42% which was 14.05% higher than the original tiny YOLO v4 thus, ensuring that the proposed network is capable of accurate detection of a mask on the face region in real-time surveillance applications where visibility of complete face area is a guideline.

摘要

违法者利用口罩来隐藏身份,在当前新冠疫情大流行时期,佩戴口罩已成为一种新的常态,这使得调查机构识别违法者成为一项艰巨的任务。为了解决使用监控摄像头检测戴口罩人员的问题,我们提出了一种基于改进的微小YOLO v4目标检测器的新型口罩视觉系统。所提出的视觉系统的口罩检测网络是通过将微小YOLO v4与空间金字塔池化(SPP)模块及额外的YOLO检测层集成而开发的,并在一个由超过50000张图像组成的自行创建的口罩检测数据集上进行了测试和验证。所提出的微小YOLO v4 - SPP网络在所用数据集上的平均精度均值(mAP)值达到了64.31%,比微小YOLO v4高6.6%。具体而言,对于在面部区域检测像口罩这样的小物体的存在,所提出的基于微小YOLO v4 - SPP的视觉系统实现了84.42%的平均精度(AP),比原始的微小YOLO v4高14.05%,因此,确保了所提出的网络能够在完整面部区域可见性作为指导原则的实时监控应用中准确检测面部区域的口罩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a468/8527299/8fa2f95b042c/12652_2021_3541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验