Suppr超能文献

一种利用逻辑-正弦混沌映射和细胞自动机的彩色图像加密方案。

A color image encryption scheme utilizing a logistic-sine chaotic map and cellular automata.

作者信息

Sun Shiji, Yang Wenzhong, Yin Yabo, Tian Xiaodan, Li Guanghan, Deng Xiangxin

机构信息

School of Computer Science and Technology (School of Cyberspace Security), Xinjiang University, Urumqi, 830046, China.

Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi, 830046, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21603. doi: 10.1038/s41598-025-04968-4.

Abstract

The rapid advancement of 5G technology has led to a significant increase in the generation and transmission of visual image data, underscoring the growing need for robust privacy protection. However, existing chaotic encryption methods often suffer from simplicity and limited security because they rely on single-layer encryption approaches. To address these challenges, this paper introduces a multi-layer image encryption algorithm that leverages the Logistic-Sine chaotic Map (LSCM) and cellular automata for enhanced security. Initially, the R, G, and B channels of an image are extracted and subjected to independent row and column transformations, creating a new, scrambled matrix. Subsequently, the proposed LSCM, which integrates logistic and sine maps to overcome periodic vulnerabilities, generates a rich chaotic sequence for XOR-based encryption. Finally, cellular automata further enhance the obfuscation, increasing the algorithm's complexity and attack resistance. Experimental results demonstrate that the image encryption algorithm achieves high security, strong robustness against noise and data loss, and superior performance in statistical and correlation analyses. These findings suggest that the algorithm is well-suited for protecting visual data in networked environments, offering significant application value in image privacy and security.

摘要

5G技术的迅速发展导致视觉图像数据的生成和传输大幅增加,凸显了对强大隐私保护的需求日益增长。然而,现有的混沌加密方法往往因依赖单层加密方法而存在简单性和安全性有限的问题。为应对这些挑战,本文引入了一种多层图像加密算法,该算法利用Logistic-Sine混沌映射(LSCM)和细胞自动机来增强安全性。首先,提取图像的R、G和B通道并对其进行独立的行和列变换,创建一个新的加扰矩阵。随后,所提出的LSCM通过整合逻辑映射和正弦映射来克服周期性漏洞,生成丰富的混沌序列用于基于异或的加密。最后,细胞自动机进一步增强混淆效果,增加算法的复杂性和抗攻击性。实验结果表明,该图像加密算法实现了高安全性、对噪声和数据丢失的强鲁棒性以及在统计和相关性分析中的卓越性能。这些发现表明,该算法非常适合在网络环境中保护视觉数据,在图像隐私和安全方面具有重要的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d755/12219837/2b42b6155f4c/41598_2025_4968_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验