一种用于在无监督域适应中改进语义分割的简单预处理方法。
A simple preprocessing approach for improving semantic segmentation in unsupervised domain adaptation.
作者信息
Ettedgui Shahaf, Abu-Hussein Shady, Giryes Raja
机构信息
School of Electrical Engineering, Tel Aviv University, 69978, Tel Aviv, Israel.
出版信息
Sci Rep. 2025 Jul 1;15(1):22363. doi: 10.1038/s41598-025-05368-4.
Unsupervised Domain Adaptation (UDA) is a powerful strategy for bridging the gap between synthetic (source) data and real-world (target) data, thereby reducing expensive manual annotations. In this work, we propose ProCST, a novel preprocessing framework that translates source images into target-like images while preserving essential semantic content. Unlike conventional image-to-image or adversarial-based approaches, ProCST utilizes a multi-scale architecture and a dedicated combination of losses-including a new cyclic label loss-to maintain class structure and context. By seamlessly integrating ProCST as a pre-processing stage into existing UDA pipelines, we not only reduce the domain gap but also achieve consistent performance gains. For example, our method improves the mean Intersection-over-Union (mIoU) of state-of-the-art UDA techniques by up to 1.1% on standard tasks such as GTA5 → Cityscapes and 2.2% on an industrial waste segmentation challenge, outperforming current best results. These enhancements underscore ProCST's ability to generate target-like images that retain sufficient semantic fidelity for robust model training. Overall, ProCST offers a cost-effective solution to domain adaptation in semantic segmentation, helping advance real-world applications that rely on large-scale annotated data. Our code and data are available at https://github.com/shahaf1313/ProCST .
无监督域适应(UDA)是一种强大的策略,用于弥合合成(源)数据与现实世界(目标)数据之间的差距,从而减少昂贵的人工标注。在这项工作中,我们提出了ProCST,这是一种新颖的预处理框架,可将源图像转换为类似目标的图像,同时保留基本的语义内容。与传统的图像到图像或基于对抗的方法不同,ProCST利用多尺度架构和专门的损失组合(包括新的循环标签损失)来保持类结构和上下文。通过将ProCST作为预处理阶段无缝集成到现有的UDA管道中,我们不仅缩小了域差距,还实现了一致的性能提升。例如,在诸如GTA5→Cityscapes等标准任务上,我们的方法将最先进的UDA技术的平均交并比(mIoU)提高了1.1%,在工业废物分割挑战中提高了2.2%,优于当前的最佳结果。这些改进突出了ProCST生成类似目标图像的能力,这些图像保留了足够的语义保真度以进行稳健的模型训练。总体而言,ProCST为语义分割中的域适应提供了一种经济高效的解决方案,有助于推进依赖大规模标注数据的实际应用。我们的代码和数据可在https://github.com/shahaf1313/ProCST上获取。