文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过机器学习DNA甲基化模式分析识别卵巢癌。

Identifying ovarian cancer with machine learning DNA methylation pattern analysis.

作者信息

Gonzalez Bosquet Jesus, Wagner Vincent M, Russo Douglas, Reyes Henry D, Newtson Andreea M, Bender David P, Goodheart Michael J

机构信息

Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.

Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.

出版信息

Sci Rep. 2025 Jul 1;15(1):20910. doi: 10.1038/s41598-025-05460-9.


DOI:10.1038/s41598-025-05460-9
PMID:40594531
Abstract

The majority of patients with epithelial ovarian cancer (EOC) continue to be diagnosed at an advanced stage despite great advances in this disease treatment. To impact overall survival, we need better methods of EOC early diagnosis. We performed a case control study to predict high-grade serous cancer (HGSC) using artificial intelligence methodology and methylated DNA from surgical specimens. Initial prediction models with MethylNet were accurate but complex (AUC = 100%). We optimized these models by selecting the most informative probes with univariate ANOVA analyses first, and then multivariate lasso regression modelling. This step-wise approach resulted in 9 methylated probes predicting HGSC with an AUC of 100%. These models were validated with different analytics and with an independent DNA-methylation experiment with excellent performances.

摘要

尽管上皮性卵巢癌(EOC)的治疗取得了巨大进展,但大多数患者仍在晚期才被诊断出来。为了影响总体生存率,我们需要更好的EOC早期诊断方法。我们进行了一项病例对照研究,使用人工智能方法和手术标本中的甲基化DNA来预测高级别浆液性癌(HGSC)。最初使用MethylNet的预测模型准确但复杂(AUC = 100%)。我们首先通过单因素方差分析选择最具信息性的探针,然后进行多变量套索回归建模来优化这些模型。这种逐步方法产生了9个预测HGSC的甲基化探针,AUC为100%。这些模型通过不同的分析方法以及独立的DNA甲基化实验进行了验证,表现出色。

相似文献

[1]
Identifying ovarian cancer with machine learning DNA methylation pattern analysis.

Sci Rep. 2025-7-1

[2]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[3]
Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer.

Cochrane Database Syst Rev. 2022-2-16

[4]
Taxane monotherapy regimens for the treatment of recurrent epithelial ovarian cancer.

Cochrane Database Syst Rev. 2022-7-12

[5]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[6]
Optimal primary surgical treatment for advanced epithelial ovarian cancer.

Cochrane Database Syst Rev. 2011-8-10

[7]
Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer.

Cochrane Database Syst Rev. 2012-3-14

[8]
Risk-reducing bilateral salpingo-oophorectomy in women with BRCA1 or BRCA2 mutations.

Cochrane Database Syst Rev. 2018-8-24

[9]
Luteinising hormone releasing hormone (LHRH) agonists for the treatment of relapsed epithelial ovarian cancer.

Cochrane Database Syst Rev. 2016-6-29

[10]
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.

Cochrane Database Syst Rev. 2016-3-1

本文引用的文献

[1]
Evaluation of clinical prediction models (part 2): how to undertake an external validation study.

BMJ. 2024-1-15

[2]
A genome-wide cell-free DNA methylation analysis identifies an episignature associated with metastatic luminal B breast cancer.

Front Cell Dev Biol. 2022-10-25

[3]
DNA methylation biomarkers for noninvasive detection of triple-negative breast cancer using liquid biopsy.

Int J Cancer. 2023-3-1

[4]
AI in Breast Cancer Imaging: A Survey of Different Applications.

J Imaging. 2022-8-26

[5]
Current and Emerging Methods for Ovarian Cancer Screening and Diagnostics: A Comprehensive Review.

Cancers (Basel). 2022-6-11

[6]
Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging.

BMC Med Imaging. 2022-4-8

[7]
Methylated DNA markers for plasma detection of ovarian cancer: Discovery, validation, and clinical feasibility.

Gynecol Oncol. 2022-6

[8]
Detection of tumor-specific DNA methylation markers in the blood of patients with pituitary neuroendocrine tumors.

Neuro Oncol. 2022-7-1

[9]
Liquid biopsy with droplet digital PCR targeted to specific mutations in plasma cell-free tumor DNA can detect ovarian cancer recurrence earlier than CA125.

Gynecol Oncol Rep. 2021-8-17

[10]
Creation and validation of models to predict response to primary treatment in serous ovarian cancer.

Sci Rep. 2021-3-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索