Suppr超能文献

基于 tensorflow 和 keras 的高级深度学习在数字全景成像中牙齿发育阶段分类的准确性。

Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging.

机构信息

Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.

Center for Integrated Systems Engineering and Advanced Technologies (INTEGRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.

出版信息

BMC Med Imaging. 2022 Apr 8;22(1):66. doi: 10.1186/s12880-022-00794-6.

Abstract

BACKGROUND

This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.

METHODS

A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.

RESULTS

Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.

CONCLUSIONS

The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.

摘要

背景

本研究旨在提出图像处理和机器学习模型的组合,使用基于 Keras 的深度学习卷积神经网络(DCNN)模型对下颌前磨牙的成熟度发育进行分割。

方法

从 5 至 14 岁患者的回顾性数字牙科全景成像中检索到一个包含 240 张图像(每性别每个阶段 20 张图像)的数据集。在图像预处理中,为左侧下颌第一(P1)和第二(P2)恒前磨牙分配了一个 250×250 像素的边界框。使用 Python TensorFlow 和 Keras 库对图像进行动态规划主动轮廓(DP-AC)和卷积神经网络的实现,分别用于图像分割和分类中的图像滤波过程。

结果

使用 DP-AC 算法进行图像分割增强了感兴趣区域中图像特征的可见性,同时抑制了图像的背景噪声。该模型在训练集、验证集和测试集上的准确率分别为 97.74%、96.63%和 78.13%。此外,还确定了人类观察者和计算机之间存在中度一致性(Kappa 值=0.58)。尽管如此,由于在学习过程中没有出现模型过拟合或欠拟合的迹象,因此仍实现了一个稳健的 DCNN 模型。

结论

DP-AC 和卷积神经网络算法用于分割和识别前磨牙的数字成像和深度学习技术的应用为未来半自动法医牙科分期提供了有希望的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4061/8991580/81f4363920ec/12880_2022_794_Fig1_HTML.jpg

相似文献

2
Accuracy of automated forensic dental age estimation lab (F-DentEst Lab) on large Malaysian dataset.
Forensic Sci Int. 2024 Aug;361:112150. doi: 10.1016/j.forsciint.2024.112150. Epub 2024 Jul 15.
3
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
J Digit Imaging. 2018 Oct;31(5):738-747. doi: 10.1007/s10278-018-0062-2.
5
Robust automated teeth identification from dental radiographs using deep learning.
J Dent. 2023 Sep;136:104607. doi: 10.1016/j.jdent.2023.104607. Epub 2023 Jul 6.
6
Keras R-CNN: library for cell detection in biological images using deep neural networks.
BMC Bioinformatics. 2020 Jul 11;21(1):300. doi: 10.1186/s12859-020-03635-x.
7
Dental bitewing radiographs segmentation using deep learning-based convolutional neural network algorithms.
Oral Radiol. 2024 Apr;40(2):165-177. doi: 10.1007/s11282-023-00717-3. Epub 2023 Dec 4.
8
Deep learning for automated detection and numbering of permanent teeth on panoramic images.
Dentomaxillofac Radiol. 2022 Feb 1;51(2):20210296. doi: 10.1259/dmfr.20210296. Epub 2021 Oct 13.
9
An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
Comput Math Methods Med. 2020 Jul 14;2020:6789306. doi: 10.1155/2020/6789306. eCollection 2020.
10
U-Net based deep learning bladder segmentation in CT urography.
Med Phys. 2019 Apr;46(4):1752-1765. doi: 10.1002/mp.13438. Epub 2019 Feb 28.

引用本文的文献

2
Different artificial neural networks for predicting burnout risk in Italian anesthesiologists.
J Anesth Analg Crit Care. 2025 Jul 1;5(1):40. doi: 10.1186/s44158-025-00255-w.
3
Identifying ovarian cancer with machine learning DNA methylation pattern analysis.
Sci Rep. 2025 Jul 1;15(1):20910. doi: 10.1038/s41598-025-05460-9.
4
Artificial intelligence model for application in dental traumatology.
Eur Arch Paediatr Dent. 2025 May 31. doi: 10.1007/s40368-025-01063-0.
5
Dental age estimation using a convolutional neural network algorithm on panoramic radiographs: A pilot study in Indonesia.
Imaging Sci Dent. 2025 Mar;55(1):28-36. doi: 10.5624/isd.20240134. Epub 2025 Mar 10.
8
Artificial Intelligence in Forensic Sciences: A Systematic Review of Past and Current Applications and Future Perspectives.
Cureus. 2024 Sep 28;16(9):e70363. doi: 10.7759/cureus.70363. eCollection 2024 Sep.
9
Using an Ensemble of Segmentation Methods to Detect Vertebral Bodies on Radiographs.
AJNR Am J Neuroradiol. 2024 Oct 3;45(10):1512-1520. doi: 10.3174/ajnr.A8343.
10
Fully automated deep learning approach to dental development assessment in panoramic radiographs.
BMC Oral Health. 2024 Apr 6;24(1):426. doi: 10.1186/s12903-024-04160-6.

本文引用的文献

1
Towards fully automated third molar development staging in panoramic radiographs.
Int J Legal Med. 2020 Sep;134(5):1831-1841. doi: 10.1007/s00414-020-02283-3. Epub 2020 Apr 1.
2
Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):635-642. doi: 10.1016/j.oooo.2019.11.007. Epub 2019 Nov 15.
3
Comparing third molar root development staging in panoramic radiography, extracted teeth, and cone beam computed tomography.
Int J Legal Med. 2020 Jan;134(1):347-353. doi: 10.1007/s00414-019-02206-x. Epub 2019 Nov 21.
4
Effect of Lower Third Molar Segmentations on Automated Tooth Development Staging using a Convolutional Neural Network.
J Forensic Sci. 2020 Mar;65(2):481-486. doi: 10.1111/1556-4029.14182. Epub 2019 Sep 5.
5
Genetic and environmental influences on third molar root mineralization.
Arch Oral Biol. 2019 Feb;98:220-225. doi: 10.1016/j.archoralbio.2018.11.026. Epub 2018 Nov 26.
6
Third molar maturity index for indicating the legal adult age in southeastern France.
Forensic Sci Int. 2019 Jan;294:218.e1-218.e6. doi: 10.1016/j.forsciint.2018.10.013. Epub 2018 Oct 28.
7
Marker-based watershed transform method for fully automatic mandibular segmentation from CBCT images.
Dentomaxillofac Radiol. 2019 Feb;48(2):20180261. doi: 10.1259/dmfr.20180261. Epub 2018 Nov 9.
9
Performance of Willem's dental age estimation method in children: A systematic review and meta-analysis.
Forensic Sci Int. 2017 Nov;280:245.e1-245.e10. doi: 10.1016/j.forsciint.2017.08.032. Epub 2017 Sep 7.
10
Stages in third molar development and eruption to estimate the 18-year threshold Malay juvenile.
Arch Oral Biol. 2015 Oct;60(10):1571-6. doi: 10.1016/j.archoralbio.2015.07.017. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验