Suppr超能文献

基于深度学习利用明场显微镜对小鼠生精小管阶段进行自动预测。

Deep-learning-based automated prediction of mouse seminiferous tubule stage by using bright-field microscopy.

作者信息

Tokuoka Yuta, Endo Tsutomu, Morikura Takashi, Hiradate Yuki, Ikawa Masahito, Funahashi Akira

机构信息

Department of Biosciences and Informatics, Keio University, Kanagawa, Japan.

Center for Experimental Animals, Research Facility Cluster, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

Sci Rep. 2025 Jul 1;15(1):21849. doi: 10.1038/s41598-025-06727-x.

Abstract

Infertility is a global issue, and approximately 50% of cases are due to male factors, with defective spermatogenesis being the main one. For studies of spermatogenesis, evaluating the seminiferous tubule stage is essential. However, current evaluation methods involve labor-intensive manual tasks with a lack of reproducibility owing to the subjective nature of visual evaluation by experts. Here, we propose a deep-learning-based method for automatically and objectively evaluating the seminiferous tubule stage. Our approach predicts which of 12 seminiferous tubule stages is represented in bright-field microscopic images of mouse seminiferous tubules stained by hematoxylin-PAS. The maximum prediction accuracy of our approach was 79.58% which rose to 98.33% with allowance for a prediction error of [Formula: see text] stage. Remarkably, although the model was not explicitly trained on the stage transition patterns, it inferred the patterns involved in the spermatogenesis. This method not only advances our understanding of spermatogenesis but also holds promise for improving the automated diagnosis of infertility.

摘要

不孕症是一个全球性问题,约50%的病例归因于男性因素,其中精子发生缺陷是主要因素。对于精子发生的研究,评估生精小管阶段至关重要。然而,当前的评估方法涉及劳动强度大的手工任务,且由于专家视觉评估的主观性而缺乏可重复性。在此,我们提出一种基于深度学习的方法,用于自动、客观地评估生精小管阶段。我们的方法预测苏木精- PAS染色的小鼠生精小管明场显微图像中所呈现的12个生精小管阶段中的哪一个。我们方法的最大预测准确率为79.58%,若允许[公式:见正文]阶段的预测误差,则该准确率升至98.33%。值得注意的是,尽管该模型未明确针对阶段转换模式进行训练,但它推断出了精子发生过程中涉及的模式。该方法不仅增进了我们对精子发生的理解,也有望改善不孕症的自动化诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验