Suppr超能文献

翻译后修饰充当一种类似数字开关的作用,影响拟南芥质膜内在蛋白2;1(AtPIP2;1)的水和阳离子通透性。

Post-translational modification acts as a digital like switch influencing AtPIP2;1 water and cation permeability.

作者信息

Qiu Jiaen, McGaughey Samantha A, Byrt Caitlin S, Tyerman Steve D

机构信息

Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia.

Division of Plant Sciences, Research School of Biology, College of Science, Australian National University, Acton, ACT, 2601, Australia.

出版信息

Sci Rep. 2025 Jul 2;15(1):22552. doi: 10.1038/s41598-025-06200-9.

Abstract

Plant aquaporins (AQPs) were initially described as a family of membrane-localized proteins exclusively facilitating water transport. Subsequently, sub-sets of plant AQPs have exhibited diverse functionalities beyond water transport. The aquaporin AtPIP2;1, an abundant Plasma membrane Intrinsic Protein in Arabidopsis thaliana, can transport water but also CO, HO and monovalent cations under certain conditions. However, the mechanisms regulating the selectivity of AtPIP2;1, particularly for cations and water, remain to be fully explored. Here we report the outcome of mutating four AtPIP2;1 serine phosphorylation sites to mimic states of phosphorylation and dephosphorylation in loops B and D, and the C-terminal domain. Expression of the mutated proteins in Xenopus laevis oocytes allowed analysis of both water and ion conduction. Concurrent modifications at the four phosphorylation sites may collectively act as a 'selectivity switch,' modulating the permeability between cations and water for the homotetramer of AtPIP2;1, allowing for the possibility of simultaneous transport, with one substrate remaining dominant. The reciprocal relationship between cation conductance and water transport fits with the model of a gated ion-permeable pore of the tetramer being dependent on the four individual monomer water conductance states. Notably, in several instances, cation conductance can be turned off, reaching levels comparable to those of the H₂O-injected control, and these instances corresponded with maximal water transport. In contrast, when cation conductance was significantly increased, water transport was reduced but not completely silenced. AtPIP2;1 triple mutant S194A/S280DS283D (A/DD, Loop D and C-terminal regions respectively) displayed very high cation conductance with a selectivity sequence for univalent cations of K > Rb > Cs > Na > Li > TEA (tetraethylammonium) > choline > NMDG (N-methyl-d-glucamine). In conclusion, our results suggest that post-translational regulations may provide AtPIP2;1 with the flexibility to switch between predominantly cation transport or predominantly water transport. This dynamic 'switch' likely contributes to maintaining water and ion homeostasis under diverse environmental conditions.

摘要

植物水通道蛋白(AQPs)最初被描述为一类仅促进水分运输的膜定位蛋白。随后,植物水通道蛋白的一些亚类展现出了除水分运输之外的多种功能。水通道蛋白AtPIP2;1是拟南芥中一种丰富的质膜内在蛋白,在某些条件下它既能运输水,也能运输一氧化碳、过氧化氢和单价阳离子。然而,调节AtPIP2;1选择性的机制,尤其是对阳离子和水的选择性调节机制,仍有待充分探索。在此,我们报告了将AtPIP2;1的四个丝氨酸磷酸化位点进行突变,以模拟B环、D环和C末端结构域的磷酸化和去磷酸化状态的结果。在非洲爪蟾卵母细胞中表达突变蛋白,使得对水和离子传导的分析成为可能。四个磷酸化位点的同时修饰可能共同作为一个“选择性开关”,调节AtPIP2;1同四聚体在阳离子和水之间的通透性,使得同时运输成为可能,且一种底物保持主导地位。阳离子传导和水分运输之间的相互关系符合四聚体的门控离子渗透孔模型,该模型依赖于四个单独单体的水传导状态。值得注意的是,在几种情况下,阳离子传导可以被关闭,达到与注射水的对照组相当的水平,而这些情况与最大水分运输相对应。相反,当阳离子传导显著增加时,水分运输减少但并未完全停止。AtPIP2;1三突变体S194A/S280D/S283D(分别位于D环和C末端区域的A/DD)表现出非常高的阳离子传导性,对单价阳离子的选择性顺序为K>Rb>Cs>Na>Li>TEA(四乙铵)>胆碱>NMDG(N-甲基-D-葡萄糖胺)。总之,我们的结果表明,翻译后调控可能为AtPIP2;1提供了在主要进行阳离子运输或主要进行水分运输之间切换的灵活性。这种动态“开关”可能有助于在不同环境条件下维持水和离子的稳态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验