Suppr超能文献

用于远程生理测量的通道注意力金字塔网络。

Channel attention pyramid network for remote physiological measurement.

作者信息

Zhang Jing, Sun Haixin, Hu Yuhao, Zhu Guanghao, Liu Fang, Yan Boyun, Pu Jiahao, Du Xiaohui, Liu Juanxiu, Liu Lin, Hao Ruqian, Wang Xingguo, Liu Yong

机构信息

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

UESTC-MIT Joint Institute of Intelligent Microtechnique, Yibin, 644002, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):22495. doi: 10.1038/s41598-025-06107-5.

Abstract

Remote photoplethysmography (rPPG) is an emerging contactless physiological parameter detection method utilizing cameras, showing great promise as a forefront technology for remote health assessment. While traditional rPPG methods have substantially contributed to the development of affordable camera-based health monitoring systems, their dependence on specific assumptions may lead to performance degradation when confronted with real-time dynamic interferences. The article presents a comprehensive overview of CAP-rPPG, an innovative method for remote physiological measurement through video analysis. This method employs a multi-scale deep learning architecture with a Gaussian pyramid to capture facial features at different scales that are often overlooked in prior work. A channel attention module further emphasizes rPPG-rich channels, mitigating the issue of feature dilution caused by excessive channel depth and enhancing the accuracy of physiological signal extraction from facial videos. The uniqueness of CAP-rPPG lies in its hybrid loss function, adeptly balancing the short-term characteristics, long-term characteristics of the signal and the correlation between the predicted HR and the ground-truth HR. CAP-rPPG demonstrates outstanding robustness under various challenging conditions, such as varying lighting environments and physical motion. It consistently outperforms most state-of-the-art methods on both the UBFC-rPPG and PURE datasets. Its capability to non-invasively capture subtle physiological changes from video data represents a significant leap forward in the realm of remote health monitoring technologies.

摘要

远程光电容积脉搏波描记法(rPPG)是一种利用摄像头的新兴非接触式生理参数检测方法,作为远程健康评估的前沿技术显示出巨大潜力。虽然传统的rPPG方法为基于摄像头的经济实惠的健康监测系统的发展做出了重大贡献,但它们对特定假设的依赖可能导致在面对实时动态干扰时性能下降。本文全面概述了CAP-rPPG,这是一种通过视频分析进行远程生理测量的创新方法。该方法采用带有高斯金字塔的多尺度深度学习架构,以捕捉先前工作中经常被忽视的不同尺度的面部特征。通道注意力模块进一步强调富含rPPG的通道,减轻因通道深度过大导致的特征稀释问题,并提高从面部视频中提取生理信号的准确性。CAP-rPPG的独特之处在于其混合损失函数,能够巧妙地平衡信号的短期特征、长期特征以及预测心率与真实心率之间的相关性。CAP-rPPG在各种具有挑战性的条件下,如不同的光照环境和身体运动,都表现出出色的鲁棒性。在UBFC-rPPG和PURE数据集上,它始终优于大多数最先进的方法。其从视频数据中无创捕捉细微生理变化的能力代表了远程健康监测技术领域的重大飞跃。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/185c/12217265/b4e3d0bf5d93/41598_2025_6107_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验