文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习方法在远程心率测量中的应用:综述与未来研究议程。

Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda.

机构信息

Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

PanopticAI, Hong Kong Science and Technology Parks, New Territories, Hong Kong, China.

出版信息

Sensors (Basel). 2021 Sep 20;21(18):6296. doi: 10.3390/s21186296.


DOI:10.3390/s21186296
PMID:34577503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8473186/
Abstract

Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community. In recent years, the success of deep learning (DL) methods for image and video analysis has inspired researchers to apply such techniques to various parts of the remote physiological signal extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically for remote HR measurement, categorizing them based on model architecture and application. We further detail relevant real-world applications of remote physiological monitoring and summarize various common resources used to accelerate related research progress. Lastly, we analyze the implications of research findings and discuss research gaps to guide future explorations.

摘要

心率(HR)是用于指示人体生理健康的基本生命体征之一。传统的 HR 监测器通常需要与皮肤接触,而远程光体积描记术(rPPG)则通过视频摄像机捕捉皮肤的细微光变化来实现非接触式 HR 监测。鉴于这项技术在数字医疗保健未来的巨大潜力,生理信号的远程监测在研究界引起了广泛关注。近年来,深度学习(DL)方法在图像和视频分析方面的成功激发了研究人员将这些技术应用于远程生理信号提取管道的各个部分。在本文中,我们讨论了基于 DL 的方法在远程 HR 测量方面的一些最新进展,根据模型架构和应用对其进行分类。我们进一步详细介绍了远程生理监测的相关实际应用,并总结了用于加速相关研究进展的各种常见资源。最后,我们分析了研究结果的意义,并讨论了研究差距,以指导未来的探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/b54a0b66c1e9/sensors-21-06296-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/58cb5f6df90f/sensors-21-06296-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/bf6f185a7179/sensors-21-06296-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f187ce426a42/sensors-21-06296-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/2056f74c5adb/sensors-21-06296-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/60868276d1fd/sensors-21-06296-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/197d602d341e/sensors-21-06296-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/da7a54bccff9/sensors-21-06296-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/8d5203da93be/sensors-21-06296-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f52a5d9caa43/sensors-21-06296-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/a79d0b3ac22c/sensors-21-06296-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/c34a12034ac4/sensors-21-06296-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/1e527c081fba/sensors-21-06296-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/ba44cab01ea1/sensors-21-06296-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f40afd1d8daf/sensors-21-06296-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/0d8e1ab6c1c3/sensors-21-06296-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/4a8a25fccb8e/sensors-21-06296-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/c23e8e655af2/sensors-21-06296-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/13abd60c8e6b/sensors-21-06296-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/cc52f3ce44da/sensors-21-06296-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/b54a0b66c1e9/sensors-21-06296-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/58cb5f6df90f/sensors-21-06296-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/bf6f185a7179/sensors-21-06296-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f187ce426a42/sensors-21-06296-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/2056f74c5adb/sensors-21-06296-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/60868276d1fd/sensors-21-06296-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/197d602d341e/sensors-21-06296-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/da7a54bccff9/sensors-21-06296-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/8d5203da93be/sensors-21-06296-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f52a5d9caa43/sensors-21-06296-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/a79d0b3ac22c/sensors-21-06296-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/c34a12034ac4/sensors-21-06296-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/1e527c081fba/sensors-21-06296-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/ba44cab01ea1/sensors-21-06296-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/f40afd1d8daf/sensors-21-06296-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/0d8e1ab6c1c3/sensors-21-06296-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/4a8a25fccb8e/sensors-21-06296-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/c23e8e655af2/sensors-21-06296-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/13abd60c8e6b/sensors-21-06296-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/cc52f3ce44da/sensors-21-06296-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fee/8473186/b54a0b66c1e9/sensors-21-06296-g020.jpg

相似文献

[1]
Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda.

Sensors (Basel). 2021-9-20

[2]
Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement.

Front Bioeng Biotechnol. 2024-7-17

[3]
A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods.

Sensors (Basel). 2021-5-27

[4]
Biometric Signals Estimation Using Single Photon Camera and Deep Learning.

Sensors (Basel). 2020-10-27

[5]
Conventional and deep learning methods in heart rate estimation from RGB face videos.

Physiol Meas. 2024-2-9

[6]
New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method.

Comput Biol Med. 2020-1

[7]
Deep learning-based remote-photoplethysmography measurement from short-time facial video.

Physiol Meas. 2022-11-3

[8]
Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.

Sensors (Basel). 2021-10-12

[9]
AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.

Comput Biol Med. 2022-2

[10]
Video-Based Pulse Rate Variability Measurement Using Periodic Variance Maximization and Adaptive Two-Window Peak Detection.

Sensors (Basel). 2020-5-12

引用本文的文献

[1]
Flexible Wearable Heart Rate Monitoring System and Low-Power Design: A Review.

Sensors (Basel). 2025-8-8

[2]
Channel attention pyramid network for remote physiological measurement.

Sci Rep. 2025-7-2

[3]
Non-Contact Vision-Based Techniques of Vital Sign Monitoring: Systematic Review.

Sensors (Basel). 2024-6-19

[4]
Comparison of Machine Learning Algorithms for Heartbeat Detection Based on Accelerometric Signals Produced by a Smart Bed.

Sensors (Basel). 2024-3-15

[5]
Contactless Blood Oxygen Saturation Estimation from Facial Videos Using Deep Learning.

Bioengineering (Basel). 2024-3-4

[6]
Machine learning-based classification analysis of knowledge worker mental stress.

Front Public Health. 2023

[7]
Robust in-vehicle heartbeat detection using multimodal signal fusion.

Sci Rep. 2023-11-27

[8]
Contactless Technologies, Sensors, and Systems for Cardiac and Respiratory Measurement during Sleep: A Systematic Review.

Sensors (Basel). 2023-5-24

[9]
An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation.

Sensors (Basel). 2023-3-23

[10]
Towards a Machine Learning-Based Digital Twin for Non-Invasive Human Bio-Signal Fusion.

Sensors (Basel). 2022-12-12

本文引用的文献

[1]
Deep Learning for Face Anti-Spoofing: A Survey.

IEEE Trans Pattern Anal Mach Intell. 2023-5

[2]
Is body temperature mass screening a reliable and safe option for preventing COVID-19 spread?

Diagnosis (Berl). 2021-9-2

[3]
Evaluation of biases in remote photoplethysmography methods.

NPJ Digit Med. 2021-6-3

[4]
Worksite Temperature Screening for COVID-19.

J Occup Environ Med. 2021-8-1

[5]
Non-contact breathing rate monitoring in newborns: A review.

Comput Biol Med. 2021-5

[6]
Systematic analysis of video-based pulse measurement from compressed videos.

Biomed Opt Express. 2020-12-18

[7]
PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography.

IEEE J Biomed Health Inform. 2021-5

[8]
Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions.

ACS Sens. 2021-2-26

[9]
Assessment of physiological signs associated with COVID-19 measured using wearable devices.

NPJ Digit Med. 2020-11-30

[10]
Pre-symptomatic detection of COVID-19 from smartwatch data.

Nat Biomed Eng. 2020-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索