Suppr超能文献

用于超快电子衍射实验设计的机器学习

Machine learning for experimental design of ultrafast electron diffraction.

作者信息

Shaaban Mohammad, El-Borgi Sami, Krishnamoorthy Aravind

机构信息

Department of Mechanical Engineering, Texas A & M University, College Station, USA.

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

出版信息

Sci Rep. 2025 Jul 2;15(1):23059. doi: 10.1038/s41598-025-06779-z.

Abstract

Ultrafast electron diffraction (UED) experiments can extract insights into material behavior at ultrafast timescales but are limited by the manual analysis required to process several gigabytes of diffraction pattern data. The lack of real-time data prevents in situ tuning of experimental parameters toward desirable material dynamics or avoid sample damage. We demonstrate that machine learning methods based on Convolutional Neural Networks trained on synthetic and experimental diffraction patterns can perform real-time analysis of diffraction data to resolve dynamical processes in a representative material, [Formula: see text], and identify signs of material damage. By building on CNN's ability to learn compressed representations of diffraction patterns that map to distinct material dynamics, we construct Convolutional Variational Autoencoder models to track structural phase transformation in a model material system through the time trajectory of UED images in the low-dimensional latent space. Such models enable real-time steering of experimental parameters towards conditions that realize phase transformations or other desirable outcomes by mapping experimental conditions to distinct regions of the latent space. These examples show the ability of machine learning to design self-correcting diffraction experiments to optimize the use of large-scale user facilities.

摘要

超快电子衍射(UED)实验能够洞察材料在超快时间尺度下的行为,但受限于处理数GB衍射图案数据所需的人工分析。缺乏实时数据阻碍了根据理想的材料动力学原位调整实验参数或避免样品损坏。我们证明,基于在合成和实验衍射图案上训练的卷积神经网络的机器学习方法,可以对衍射数据进行实时分析,以解析代表性材料[化学式:见正文]中的动力学过程,并识别材料损坏的迹象。通过利用卷积神经网络学习映射到不同材料动力学的衍射图案压缩表示的能力,我们构建了卷积变分自编码器模型,通过低维潜在空间中UED图像的时间轨迹跟踪模型材料系统中的结构相变。这种模型能够通过将实验条件映射到潜在空间的不同区域,实时将实验参数调整到实现相变或其他理想结果的条件。这些例子展示了机器学习设计自我校正衍射实验以优化大型用户设施使用的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eaf/12216661/3b01bf847efe/41598_2025_6779_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验