Suppr超能文献

通过特征选择和人工神经网络增强光伏发电功率预测:一个案例研究

Enhancing PV power forecasting through feature selection and artificial neural networks: a case study.

作者信息

Ali Mokhtar, Rabehi Abdelhalim, Souahlia Abdelkerim, Guermoui Mawloud, Teta Ali, Tibermacine Imad Eddine, Rabehi Abdelaziz, Benghanem Mohamed, Agajie Takele Ferede

机构信息

Telecommunications and Smart Systems Laboratory, University of Djelfa, P.O. Box 3117, 17000, Djelfa, Algeria.

Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, 47133, Ghardaïa, Algeria.

出版信息

Sci Rep. 2025 Jul 2;15(1):22574. doi: 10.1038/s41598-025-07038-x.

Abstract

This paper presents a comprehensive investigation into enhancing photovoltaic (PV) power forecasting by systematically integrating feature selection techniques with artificial neural networks. Addressing the growing demand for reliable renewable energy forecasting, the study employs several feature selection methods, including ReliefF, minimum correlation, Chi-square test, and others, to identify the most relevant predictors for PV output prediction. Two predictive models, the multilayer perceptron (MLP) and long short-term memory (LSTM) networks, are developed and tested on a real-world dataset from southern Algeria. The results demonstrate that applying feature selection significantly improves forecasting accuracy. For instance, integrating ReliefF with MLP reduced the normalized mean absolute error (nMAE) to 9.21% with an R of 0.9608, while the best LSTM configuration achieved an nMAE of 9.29% and an R of 0.946 when using Chi-square selected features. These findings confirm that careful feature selection enhances model performance, reduces complexity, and ensures better generalization, offering valuable insights for more efficient solar energy management and grid stability.

摘要

本文通过系统地将特征选择技术与人工神经网络相结合,对提高光伏(PV)功率预测进行了全面研究。为满足对可靠可再生能源预测日益增长的需求,该研究采用了多种特征选择方法,包括ReliefF、最小相关性、卡方检验等,以确定用于光伏输出预测的最相关预测因子。开发了两种预测模型,即多层感知器(MLP)和长短期记忆(LSTM)网络,并在来自阿尔及利亚南部的真实数据集上进行了测试。结果表明,应用特征选择可显著提高预测准确性。例如,将ReliefF与MLP相结合,将归一化平均绝对误差(nMAE)降至9.21%,相关系数R为0.9608,而使用卡方选择特征时,最佳LSTM配置的nMAE为9.29%,相关系数R为0.946。这些发现证实,仔细的特征选择可提高模型性能、降低复杂性并确保更好的泛化能力,为更高效的太阳能管理和电网稳定性提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b831/12215858/5859ce12a300/41598_2025_7038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验