Ma Yue, Wang Chenglong, Fu Tianlei, Meng Ziting
The School of Civil Engineering, Harbin University, Harbin, 150086, Heilongjiang, China.
College of Teacher Education, Harbin University, Harbin, 150086, Heilongjiang, China.
Sci Rep. 2025 Jul 1;15(1):20628. doi: 10.1038/s41598-025-07423-6.
This work designs an intelligent traffic electronic information signal acquisition system based on the Internet of Things (IoT) and deep learning (DL). It aims to address the increasingly severe congestion issues in urban traffic and improve the efficiency and intelligence of traffic management. First, a system framework is constructed that includes three core modules: video acquisition and transmission (VAT), video processing (VP), and information processing. The system captures real-time video information of traffic scenes through cameras. Meanwhile, vehicle detection and tracking are performed using a video image processor (VIP) to extract traffic parameters, which are then transmitted to the traffic control platform. Second, an improved Multi-Task Convolutional Neural Network (MT-CNN) model, called Attention-Mechanism Multi-Modal Feature Fusion GooGleNet (AM-MMFF-GooGleNet), is proposed. This model integrates Multi-Modal Feature Fusion (MMFF) and Channel Attention Mechanism (AM), significantly improving the accuracy and robustness of vehicle localization and identification. Experimental results show that the AM-MMFF-GooGleNet model achieves an accuracy of 98.6% in the vehicle localization task, 3.2% higher than the original MT-GooGleNet. The accuracy under different lighting conditions and high background noise scenarios reaches 97.3%, 96.8%, and 95.5%, demonstrating strong environmental adaptability. Furthermore, the average detection time of the model is 20.5 milliseconds, indicating good real-time performance. By optimizing the DL model and system design, the ability to acquire and process vehicle electronic information signals in the intelligent transportation system (ITS) is remarkably enhanced, providing more precise decision-making support for traffic management. This work offers an innovative technical solution for the development of ITS, promoting the deep integration and application of IoT and DL technologies in the traffic field. Thus, the work provides strong technical support for alleviating urban traffic congestion and improving traffic efficiency.
这项工作设计了一种基于物联网(IoT)和深度学习(DL)的智能交通电子信息信号采集系统。其目的是解决城市交通中日益严重的拥堵问题,提高交通管理的效率和智能化水平。首先,构建了一个系统框架,该框架包括三个核心模块:视频采集与传输(VAT)、视频处理(VP)和信息处理。该系统通过摄像头捕捉交通场景的实时视频信息。同时,使用视频图像处理器(VIP)进行车辆检测和跟踪,以提取交通参数,然后将这些参数传输到交通控制平台。其次,提出了一种改进的多任务卷积神经网络(MT-CNN)模型,称为注意力机制多模态特征融合谷歌网络(AM-MMFF-GooGleNet)。该模型集成了多模态特征融合(MMFF)和通道注意力机制(AM),显著提高了车辆定位和识别的准确性和鲁棒性。实验结果表明,AM-MMFF-GooGleNet模型在车辆定位任务中的准确率达到98.6%,比原始的MT-GooGleNet高3.2%。在不同光照条件和高背景噪声场景下的准确率分别达到97.3%、96.8%和95.5%,显示出很强的环境适应性。此外,该模型的平均检测时间为20.5毫秒,表明具有良好的实时性能。通过优化深度学习模型和系统设计,智能交通系统(ITS)中获取和处理车辆电子信息信号的能力得到了显著增强,为交通管理提供了更精确的决策支持。这项工作为ITS的发展提供了一种创新的技术解决方案,推动了物联网和深度学习技术在交通领域的深度融合与应用。因此,该工作为缓解城市交通拥堵和提高交通效率提供了有力的技术支持。