Sorbonne Université, Paris, France; Dipartimento di Matematica, Università di Bologna, Italy; CAMS, CNRS - EHESS, Paris, France.
Dipartimento di Matematica, Università di Bologna, Italy.
Neural Netw. 2022 Jan;145:42-55. doi: 10.1016/j.neunet.2021.09.024. Epub 2021 Oct 5.
In this paper we introduce a biologically inspired Convolutional Neural Network (CNN) architecture called LGN-CNN that has a first convolutional layer composed of a single filter that mimics the role of the Lateral Geniculate Nucleus (LGN). The first layer of the neural network shows a rotational symmetric pattern justified by the structure of the net itself that turns up to be an approximation of a Laplacian of Gaussian (LoG). The latter function is in turn a good approximation of the receptive field profiles (RFPs) of the cells in the LGN. The analogy with the visual system is established, emerging directly from the architecture of the neural network. A proof of rotation invariance of the first layer is given on a fixed LGN-CNN architecture and the computational results are shown. Thus, contrast invariance capability of the LGN-CNN is investigated and a comparison between the Retinex effects of the first layer of LGN-CNN and the Retinex effects of a LoG is provided on different images. A statistical study is done on the filters of the second convolutional layer with respect to biological data. In conclusion, the model we have introduced approximates well the RFPs of both LGN and V1 attaining similar behavior as regards long range connections of LGN cells that show Retinex effects.
在本文中,我们介绍了一种受生物启发的卷积神经网络(CNN)架构,称为 LGN-CNN,它的第一层卷积层由一个模拟外侧膝状体(LGN)作用的单个滤波器组成。神经网络的第一层显示出旋转对称模式,这是由网络本身的结构所证明的,而这种模式实际上是对高斯拉普拉斯(LoG)的近似。后者反过来又是 LGN 中细胞感受野分布(RFPs)的良好近似。这种与视觉系统的类比直接来自神经网络的结构。在固定的 LGN-CNN 架构上给出了第一层旋转不变性的证明,并展示了计算结果。因此,研究了 LGN-CNN 的对比度不变性能力,并在不同的图像上比较了 LGN-CNN 第一层的 Retinex 效应和 LoG 的 Retinex 效应。对第二层卷积滤波器进行了生物数据的统计研究。总之,我们引入的模型很好地近似了 LGN 和 V1 的 RFPs,在 LGN 细胞的长程连接方面表现出类似的行为,这些细胞表现出 Retinex 效应。