Suppr超能文献

不同生产性参与模式的老年人自我同情的网络结构

The network structure of self-compassion in older adults with different productive engagement patterns.

作者信息

Hu Huinan, Cheng Grand H-L, Chan Stephen Cheong Yu, Chong Eddie S K, Lu Peiyi, Cheung H N

机构信息

Department of Social Work and Social Administration, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.

School of Arts and Social Sciences, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22321. doi: 10.1038/s41598-025-08157-1.

Abstract

Self-compassion has gained attention as an important factor for mental health. However, research on self-compassion in older adults is limited. This study aims to reveal the interactions among six self-compassion components in older adults and examine how productive engagement influences these components. A total of 807 older adults aged 55 and older in Hong Kong (67% females) participated in the study. They reported their self-compassion and productive engagement through questionnaires. Latent class analysis (LCA) was used to identify different patterns of productive engagement. The EBICglasso method estimated the self-compassion network for the overall sample and for different productive engagement patterns. The LCA results identified a group with low productive engagement (low productive engagement group) and three groups with engagement in certain productive activities (productive engagement group). The network analysis found that isolation was the central component in the overall sample and in the low productive engagement group. Mindfulness was the central component in the productive engagement group. A dual effect of productive engagement group reported that while it may enhance mindfulness, it might also contribute to the feeling of isolation. Further research is needed to explore these relationships in diverse sociocultural settings.

摘要

自我同情作为心理健康的一个重要因素已受到关注。然而,关于老年人自我同情的研究有限。本研究旨在揭示老年人自我同情六个组成部分之间的相互作用,并考察富有成效的参与如何影响这些组成部分。香港共有807名55岁及以上的老年人(67%为女性)参与了该研究。他们通过问卷调查汇报了自己的自我同情和富有成效的参与情况。潜在类别分析(LCA)用于识别富有成效的参与的不同模式。EBICglasso方法估计了总体样本以及不同富有成效的参与模式的自我同情网络。LCA结果识别出一个低富有成效参与组(低富有成效参与组)和三个参与特定富有成效活动的组(富有成效参与组)。网络分析发现,在总体样本和低富有成效参与组中,孤立是核心组成部分。正念是富有成效参与组中的核心组成部分。富有成效参与组的双重效应表明,虽然它可能增强正念,但也可能导致孤立感。需要进一步研究以在不同社会文化背景下探索这些关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验