Chung Ju Yeon, Hong Yoon-Kyoung, Jeon Eunhee, Yang Seungju, Park Ayoung, Weissleder Ralph, Chong Yong Pil, Chung Hyun Jung
Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Nat Commun. 2025 Jul 1;16(1):5532. doi: 10.1038/s41467-025-60684-7.
Fungal infections pose a serious threat to global human health fueled by the increase in immunosuppressive therapies, medical implants, and transplantation. The emergence of multidrug resistance with limited options of current antifungal drugs are a further constraint. There is thus a clear and unmet need to identify therapeutic targets and develop alternative classes of antifungal agents. Here, we hypothesize that dual targeting of key regulatory genes of fungal cell wall synthesis (FKS1 encoding β-1,3-glucan synthase and CHS3 encoding chitin synthase) can synergistically inhibit fungal growth. Based on iterative designs, we generate a small library of fungal-targeted nanoconstructs, and identify a lead construct (FTNx) that shows preferential accumulation in fungal cells over mammalian cells and leads to prominent antifungal effects in vitro. We further show that FTNx is highly effective in a mouse model of disseminated candidiasis, demonstrating diminished fungal growth and enhanced survival rate. This strategy appears promising as an effective treatment for fungal infections in mammalian hosts.
真菌感染对全球人类健康构成严重威胁,免疫抑制疗法、医疗植入物和移植的增加加剧了这一威胁。多重耐药性的出现以及当前抗真菌药物选择有限,进一步限制了治疗。因此,明确且未得到满足的需求是确定治疗靶点并开发新型抗真菌药物。在此,我们假设对真菌细胞壁合成关键调控基因(编码β-1,3-葡聚糖合酶的FKS1和编码几丁质合酶的CHS3)进行双重靶向可以协同抑制真菌生长。基于迭代设计,我们构建了一个小型真菌靶向纳米结构体文库,并鉴定出一种先导结构体(FTNx),它在真菌细胞中的积累优于哺乳动物细胞,并在体外产生显著的抗真菌效果。我们进一步表明,FTNx在播散性念珠菌病小鼠模型中非常有效,显示出真菌生长减少和存活率提高。作为一种治疗哺乳动物宿主真菌感染的有效方法,这一策略似乎很有前景。
Mycopathologia. 2025-6-24
Rev Iberoam Micol. 2009-3-31
Microbiol Spectr. 2025-7
Cochrane Database Syst Rev. 2016-1-16
Cochrane Database Syst Rev. 2010-11-10
Nat Rev Microbiol. 2024-11
NPJ Antimicrob Resist. 2023
Nat Rev Dis Primers. 2024-3-21
Trends Pharmacol Sci. 2024-4
Mol Ther Nucleic Acids. 2024-2-2
Nat Rev Microbiol. 2023-12