Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 000000, Hong Kong.
Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Hong Kong, 000000, Hong Kong.
Adv Sci (Weinh). 2024 Aug;11(29):e2307591. doi: 10.1002/advs.202307591. Epub 2024 Jun 12.
Image-based cytometry faces challenges due to technical variations arising from different experimental batches and conditions, such as differences in instrument configurations or image acquisition protocols, impeding genuine biological interpretation of cell morphology. Existing solutions, often necessitating extensive pre-existing data knowledge or control samples across batches, have proved limited, especially with complex cell image data. To overcome this, "Cyto-Morphology Adversarial Distillation" (CytoMAD), a self-supervised multi-task learning strategy that distills biologically relevant cellular morphological information from batch variations, is introduced to enable integrated analysis across multiple data batches without complex data assumptions or extensive manual annotation. Unique to CytoMAD is its "morphology distillation", symbiotically paired with deep-learning image-contrast translation-offering additional interpretable insights into label-free cell morphology. The versatile efficacy of CytoMAD is demonstrated in augmenting the power of biophysical imaging cytometry. It allows integrated label-free classification of human lung cancer cell types and accurately recapitulates their progressive drug responses, even when trained without the drug concentration information. CytoMAD also allows joint analysis of tumor biophysical cellular heterogeneity, linked to epithelial-mesenchymal plasticity, that standard fluorescence markers overlook. CytoMAD can substantiate the wide adoption of biophysical cytometry for cost-effective diagnosis and screening.
基于图像的细胞分析面临挑战,因为不同实验批次和条件会导致技术差异,例如仪器配置或图像采集协议的差异,从而阻碍了对细胞形态的真正生物学解释。现有的解决方案通常需要在不同批次之间具有广泛的预先存在的数据知识或对照样本,这被证明是有限的,特别是对于复杂的细胞图像数据。为了克服这个问题,引入了“基于细胞形态学的对抗蒸馏”(CytoMAD),这是一种自监督的多任务学习策略,可以从批次变化中提取生物相关的细胞形态信息,从而实现无需复杂数据假设或广泛手动注释的多个数据批次的综合分析。CytoMAD 的独特之处在于其“形态学蒸馏”,与深度学习图像对比度转换共生,为无标记细胞形态提供了额外的可解释见解。CytoMAD 的多功能功效在增强生物物理成像细胞术的功能方面得到了证明。它允许对人类肺癌细胞类型进行无标记分类,并准确地再现它们的渐进药物反应,即使在没有药物浓度信息的情况下进行训练也是如此。CytoMAD 还允许联合分析肿瘤生物物理细胞异质性,这与上皮-间充质可塑性有关,而标准荧光标记物则忽略了这一点。CytoMAD 可以为基于生物物理的细胞术的广泛采用提供经济有效的诊断和筛查。