Chauviré Timothée, Chandrasekaran Siddarth, Dunleavy Robert, Freed Jack H, Crane Brian R
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY, USA.
Nat Commun. 2025 Jul 1;16(1):5406. doi: 10.1038/s41467-025-60623-6.
Flavin cofactors are attractive Electron Spin Resonance (ESR) probes for proteins because cellular reductants and light can generate their semiquinone states. Here, we use ESR spectroscopy to study the bacterial transmembrane aerotaxis receptor (Aer) in its native Escherichia coli membrane environment. Optimization of the spectroscopic (electronic relaxation times) and cell growth (isotopic labeling) conditions allow for measurements of Aer with its partners - the histidine kinase (CheA) and the coupling protein (CheW) - in native signaling arrays. Continuous-wave ESR measurements at room temperature show a rigid Aer flavin immobilized in the cofactor pocket and Q-band electron nuclear double resonance (ENDOR) measurements identify a predominant anionic semiquinone radical state in cell. Q-band four-pulse double electron-electron resonance (4P-DEER) measurements indicate a 4.1 nm distance between the two flavins of an Aer homodimer, consistent with previous in vitro measurements, but also reveal additional separations in cell indicative of chemoreceptor arrays, not previously observed for Aer. For general application, we further develop a genetically encoded Light-Oxygen and Voltage (LOV) domain for incorporation into target proteins as an ESR probe of structural properties in cell. This approach provides a framework to elucidate protein oligomeric states and conformations that are difficult to reproduce in vitro.
黄素辅因子是蛋白质有吸引力的电子自旋共振(ESR)探针,因为细胞还原剂和光可产生其半醌状态。在此,我们使用ESR光谱研究处于天然大肠杆菌膜环境中的细菌跨膜趋氧受体(Aer)。光谱(电子弛豫时间)和细胞生长(同位素标记)条件的优化使得能够在天然信号阵列中测量Aer与其伙伴——组氨酸激酶(CheA)和偶联蛋白(CheW)。室温下的连续波ESR测量表明,固定在辅因子口袋中的Aer黄素呈刚性,而Q波段电子核双共振(ENDOR)测量确定了细胞中主要的阴离子半醌自由基状态。Q波段四脉冲双电子-电子共振(4P-DEER)测量表明,Aer同型二聚体的两个黄素之间的距离为4.1nm,这与之前的体外测量结果一致,但也揭示了细胞中额外的间隔,这表明存在化学感受器阵列,这是之前Aer未观察到的。为了普遍应用,我们进一步开发了一种基因编码的光氧电压(LOV)结构域,用于作为细胞中结构特性的ESR探针整合到靶蛋白中。这种方法提供了一个框架,以阐明难以在体外重现的蛋白质寡聚状态和构象。