Suppr超能文献

浮游细菌在静止培养基和剪切流中的游动

Swimming of Buoyant Bacteria in Quiescent Medium and Shear Flows.

作者信息

Zheng Huan, Yan Ningzhe, Feng Wei, Liu Yanan, Luo Hao, Jing Guangyin

机构信息

School of Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China.

出版信息

Langmuir. 2023 Mar 28;39(12):4224-4232. doi: 10.1021/acs.langmuir.2c03088. Epub 2023 Mar 16.

Abstract

Gravity has an unavoidable effect on all living organisms inhabiting fluidic surroundings. To investigate the spatial distribution of bacteria in quiescent fluids and their rheotactic behavior in shear flows under buoyancy, we adjust the buoyant force to regulate bacterial swimming in a microfluidic channel. It is found that swimming bacteria of exhibit an obvious vertical separation when exposed to a medium with high density and gradually gather close to the up wall within minutes. The bacterial population presents a net upward number flux, which enhances the trapping of motile bacteria onto the up surface as a result of buoyancy force apart from the hydrodynamic and kinematic interactions in quiescent fluids. When flow is imposed into the channel, the buoyancy effect is however significantly suppressed. Additionally, the drift velocity perpendicular to the buoyancy vector as a result of chirality-induced transverse swimming decreases with buoyancy force. However, this transverse drift capability is recovered after excluding the intrinsic swimming motility in a quiescent medium. Failing to escape from the trapping as a result of buoyant force allows for a facile separation of bacteria along the vertical direction. The findings also offer a controllable way to redisperse and homogenize the bacteria distribution close to walls by imposing a weak shear flow.

摘要

重力对栖息在流体环境中的所有生物都有不可避免的影响。为了研究静态流体中细菌的空间分布及其在浮力作用下剪切流中的趋流行为,我们在微流控通道中调节浮力来控制细菌游动。研究发现,游动的细菌在暴露于高密度介质时会出现明显的垂直分离,并在几分钟内逐渐聚集在上壁附近。细菌群体呈现出向上的净数量通量,这使得活动细菌由于浮力而被捕获在上表面,除了静态流体中的流体动力学和运动学相互作用之外。当在通道中施加流动时,浮力效应会显著受到抑制。此外,由于手性诱导的横向游动导致的垂直于浮力矢量的漂移速度会随着浮力的增加而降低。然而,在排除静态介质中固有的游动能力后,这种横向漂移能力会恢复。由于浮力而无法逃脱捕获使得细菌能够沿垂直方向轻松分离。这些发现还提供了一种可控的方法,通过施加弱剪切流来重新分散和均匀化靠近壁面的细菌分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验