Keshmiri Mohammad, Dehgahi Shirin, Mohiuddin Abdullah, Qureshi Ahmed J
Mechanical Engineering Department, University of Alberta, Edmonton, AB, Canada.
Sci Rep. 2025 Jul 1;15(1):21662. doi: 10.1038/s41598-025-04125-x.
Metal additive manufacturing (MAM) provides remarkable design and component geometry freedom over various materials. One of the most recent MAM methods is the wire-arc additive manufacturing (WAAM) technique, which provides a higher deposition rate than other methods. This method also suffered from heterogeneity in location-based thermal profiles, leading to spatial variation in the properties of as-built mechanical properties, which become more complicated in the manufacturing design and process of large parts. To address this, we developed a data-driven spatio-temporal model based on transformer architecture to predict the location-dependent mechanical properties based on the thermal history of fabricated parts with multiple contours. The framework enables the dynamic emissivity calculation of the part for various temperatures and layer ranges to reduce the error of thermal history acquisition. We systematically compared the proposed approach's performance with other machine learning methods. The results demonstrate that the framework achieves good prediction capabilities using a small dataset. It provides a state-of-the-art methodology for predicting the spatial and temporal evolution of mechanical properties leveraging the transformer architecture. Finally, for model prediction interpretation, we investigated the location-aware morphology with various thermal profiles and mechanical properties, which allowed us to explain the reason behind each prediction.
金属增材制造(MAM)在各种材料上提供了卓越的设计和部件几何形状自由度。最新的MAM方法之一是电弧增材制造(WAAM)技术,它比其他方法具有更高的沉积速率。该方法还存在基于位置的热分布不均匀的问题,导致增材制造后的机械性能在空间上存在差异,这在大型部件的制造设计和过程中变得更加复杂。为了解决这个问题,我们开发了一种基于变压器架构的数据驱动时空模型,以根据具有多个轮廓的制造部件的热历史来预测位置相关的机械性能。该框架能够针对不同温度和层范围动态计算部件的发射率,以减少热历史获取的误差。我们系统地将所提出方法的性能与其他机器学习方法进行了比较。结果表明,该框架使用小数据集就能实现良好的预测能力。它提供了一种利用变压器架构预测机械性能时空演变的先进方法。最后,为了进行模型预测解释,我们研究了具有各种热分布和机械性能的位置感知形态,这使我们能够解释每个预测背后的原因。