Suppr超能文献

对水文时间序列预测中循环神经网络(RNN)和长短期记忆网络(LSTM)变体的批判性综述。

A critical review of RNN and LSTM variants in hydrological time series predictions.

作者信息

Waqas Muhammad, Humphries Usa Wannasingha

机构信息

The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.

Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.

出版信息

MethodsX. 2024 Sep 12;13:102946. doi: 10.1016/j.mex.2024.102946. eCollection 2024 Dec.

Abstract

The rapid advancement in Artificial Intelligence (AI) and big data has developed significance in the water sector, particularly in hydrological time-series predictions. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks have become research focal points due to their effectiveness in modeling non-linear, time-variant hydrological systems. This review explores the different architectures of RNNs, LSTMs, and Gated Recurrent Units (GRUs) and their efficacy in predicting hydrological time-series data.•RNNs are foundational but face limitations such as vanishing gradients, which impede their ability to model long-term dependencies. LSTMs and GRUs have been developed to overcome these limitations, with LSTMs using memory cells and gating mechanisms, while GRUs provide a more streamlined architecture with similar benefits.•The integration of attention mechanisms and hybrid models that combine RNNs, LSTMs, and GRUs with other Machine learning (ML) and Deep Learning (DL) has improved prediction accuracy by capturing both temporal and spatial dependencies.•Despite their effectiveness, practical implementations of these models in hydrological time series prediction require extensive datasets and substantial computational resources. Future research should develop interpretable architectures, enhance data quality, incorporate domain knowledge, and utilize transfer learning to improve model generalization and scalability across diverse hydrological contexts.

摘要

人工智能(AI)和大数据的快速发展在水行业具有重要意义,尤其是在水文时间序列预测方面。递归神经网络(RNN)和长短期记忆(LSTM)网络因其在对非线性、时变水文系统建模方面的有效性而成为研究焦点。本综述探讨了RNN、LSTM和门控递归单元(GRU)的不同架构及其在预测水文时间序列数据方面的功效。

  • RNN是基础,但面临梯度消失等局限性,这阻碍了它们对长期依赖关系进行建模的能力。LSTM和GRU的开发是为了克服这些局限性,LSTM使用记忆单元和门控机制,而GRU提供了具有类似优点的更简化架构。

  • 注意力机制与将RNN、LSTM和GRU与其他机器学习(ML)和深度学习(DL)相结合的混合模型的集成,通过捕捉时间和空间依赖性提高了预测准确性。

  • 尽管这些模型很有效,但在水文时间序列预测中的实际应用需要大量数据集和大量计算资源。未来的研究应开发可解释的架构,提高数据质量,纳入领域知识,并利用迁移学习来提高模型在不同水文背景下的泛化能力和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46b4/11422155/e054e8a3056b/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验