Zeng Jitao, Tu Xiaojuan, Qu Siming, Chen Xichan, Wang Ying, Liu Xiaona, Kang Enchuan, Tian Yi, Xiang Qianming, Lai Binbin, Gao Weiwu, Ni Bing, He Wei
Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China.
Chongqing International Institute for Immunology, Chongqing, China.
Sci Rep. 2025 Jul 1;15(1):21894. doi: 10.1038/s41598-025-05642-5.
Sexual reproduction begins with sperm-oocyte fusion to form a zygote, where chromatin undergoes dramatic reorganization to establish totipotency. Although nucleosomes- the basic units of eukaryotic chromatin and key epigenetic regulators- are extensively remodeled during early embryogenesis, their dynamic repositioning mechanisms and biological implications remain unclear. Here, we employed single-cell MNase sequencing (scMNase-seq) to map genome-wide nucleosome positioning and chromatin accessibility in individual mammalian embryos. We found that nucleosome positioning mirrored somatic cell patterns until the 4-cell stage, with nucleosome depletion and phasing at CTCF sites not fully established until morula formation. By integrating H3K4me3 localization and transcriptomic data, we revealed that nucleosome sparsity at transcription start sites (TSS) and flanking regions correlated with expression levels of genes critical for preimplantation development. Notably, these nucleosome-depleted regions likely serve as regulatory hubs influencing histone modification dynamics. Our study systematically delineates nucleosome reorganization principles during mammalian embryogenesis and provides a high-resolution resource for understanding chromatin remodeling in early development.
有性生殖始于精子与卵母细胞融合形成受精卵,在此过程中染色质会经历剧烈的重组以建立全能性。尽管核小体——真核染色质的基本单位和关键的表观遗传调控因子——在早期胚胎发育过程中会被广泛重塑,但其动态重新定位机制和生物学意义仍不清楚。在这里,我们采用单细胞微球菌核酸酶测序(scMNase-seq)来绘制单个哺乳动物胚胎全基因组范围的核小体定位和染色质可及性图谱。我们发现,直到4细胞阶段,核小体定位都反映了体细胞模式,直到桑椹胚形成时,CTCF位点的核小体缺失和相位才完全建立。通过整合H3K4me3定位和转录组数据,我们揭示了转录起始位点(TSS)及其侧翼区域的核小体稀疏性与着床前发育关键基因的表达水平相关。值得注意的是,这些核小体缺失区域可能作为影响组蛋白修饰动态变化的调控枢纽。我们的研究系统地描绘了哺乳动物胚胎发育过程中的核小体重组原则,并为理解早期发育中的染色质重塑提供了高分辨率资源。