Suppr超能文献

胚胎基因组在 DNA 复制时间程序出现时的不稳定性。

Embryonic genome instability upon DNA replication timing program emergence.

机构信息

Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.

Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.

出版信息

Nature. 2024 Sep;633(8030):686-694. doi: 10.1038/s41586-024-07841-y. Epub 2024 Aug 28.

Abstract

Faithful DNA replication is essential for genome integrity. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.

摘要

忠实的 DNA 复制对于基因组完整性至关重要。复制不足的 DNA 会导致染色体分离缺陷,这在胚胎发生过程中很常见。然而,早期哺乳动物胚胎中 DNA 复制的调控仍知之甚少。在这里,我们构建了一个单细胞全基因组 DNA 复制图谱,研究了小鼠胚胎,并确定了一个突然的复制程序开关,伴随着短暂的基因组不稳定期。在 1 细胞和 2 细胞胚胎中,我们观察到完全没有复制时间程序,整个基因组逐渐且均匀地复制,使用非常缓慢移动的复制叉。在 4 细胞胚胎中,体细胞样复制时间程序突然开始。然而,叉速度仍然很慢,S 期延长,复制压力、DNA 损伤和修复的标志物增加。随后,在 4 到 8 细胞分裂期间,特定出现了断裂型染色体分离错误,断点富集在复制较晚的区域。核苷补充剂可以挽救这些错误,加速叉速度并减少复制压力。到 8 细胞阶段,叉速度加快,S 期不再延长,染色体异常减少。因此,在正常的小鼠发育过程中存在一个短暂的基因组不稳定期,这之前是 S 期,在这个时期中,复制体水平的调节与兆碱基规模的复制时间调节之间缺乏协调,这暗示了它们的协调与基因组稳定性之间存在联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5347/11410655/ac93abfc43ea/41586_2024_7841_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验