Suppr超能文献

用于增强四环素光降解和高效水分解的MgInS/ZnO异质结中的界面S型电荷转移

Interfacial S-scheme charge transfer in MgInS/ZnO heterojunction for enhanced photodegradation of tetracycline and efficient water splitting.

作者信息

Yusuf Tunde L, Olatunde Olalekan C, Masekela Daniel, Saliu Oluwaseyi D, Modibane Kwena Desmond, Onwudiwe Damian C

机构信息

Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Private Bag X20 Hatfield 0028 Pretoria South Africa

Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University Private Bag X2046 Mmabatho 2735 South Africa.

出版信息

Nanoscale Adv. 2025 Jun 24. doi: 10.1039/d5na00573f.

Abstract

Environmental pollution and high energy costs are among today's most pressing global challenges. Photocatalysis offers a cost-effective and environmentally sustainable strategy to address these issues by enabling efficient pollutant degradation and hydrogen production. This work constructed a nanoflower MgInS and nanorod ZnO heterojunction to enhance photocatalytic performance through an interfacial S-scheme charge transfer mechanism. Unlike most reported ZnO-based heterojunctions in the literature, this approach introduces MgInS, a ternary sulfide with a narrow band gap and a high conduction band potential, to form a heterostructure material with a strong redox potential and efficient charge separation. The MgInS/ZnO heterojunction exhibited superior photocatalytic activity, achieving a remarkable 94% tetracycline (TCE) degradation efficiency, 1.4 and 3.9 times higher than that of pristine MgInS and ZnO, respectively. Furthermore, the heterojunction demonstrated an improved hydrogen evolution rate of 8.29 mmol h g, significantly surpassing ZnO (6.96 mmol h g) and MgInS (6.24 mmol h g). The enhanced performance is attributed to the efficient interfacial charge transfer, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis and electrochemical characterization, demonstrating charge migration from MgInS to ZnO. Mechanistic investigations further revealed that the S-scheme charge transfer mechanism effectively promoted charge separation and facilitated the generation of reactive radical species, ultimately leading to improved photocatalytic activity. This study highlights the potential of the rationally designed MgInS/ZnO S-scheme heterojunction as a highly efficient and sustainable photocatalyst for organic pollutant degradation and hydrogen production under visible light irradiation, providing a promising solution to environmental and energy challenges.

摘要

环境污染和高能源成本是当今全球最紧迫的挑战之一。光催化通过实现高效的污染物降解和制氢,提供了一种具有成本效益且环境可持续的策略来解决这些问题。这项工作构建了一种纳米花状MgInS和纳米棒状ZnO异质结,通过界面S型电荷转移机制来提高光催化性能。与文献中大多数报道的基于ZnO的异质结不同,这种方法引入了MgInS,一种具有窄带隙和高导带电位的三元硫化物,以形成具有强氧化还原电位和高效电荷分离的异质结构材料。MgInS/ZnO异质结表现出优异的光催化活性,四环素(TCE)降解效率达到了显著的94%,分别比原始的MgInS和ZnO高出1.4倍和3.9倍。此外,该异质结的析氢速率提高到了8.29 mmol h g,显著超过了ZnO(6.96 mmol h g)和MgInS(6.24 mmol h g)。X射线光电子能谱(XPS)分析和电化学表征证实,增强的性能归因于有效的界面电荷转移,表明电荷从MgInS迁移到ZnO。机理研究进一步表明,S型电荷转移机制有效地促进了电荷分离,并促进了活性自由基物种的产生,最终导致光催化活性的提高。这项研究突出了合理设计的MgInS/ZnO S型异质结作为一种高效且可持续的光催化剂在可见光照射下用于有机污染物降解和制氢的潜力,为环境和能源挑战提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2eb/12323857/f5c694670091/d5na00573f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验