Suppr超能文献

基于真实世界数据的高速公路新手驾驶员碰撞风险与机动性分析

Collision risk and mobility analysis of novice drivers on a highway based on real world data.

作者信息

Rizelioğlu Mehmet

机构信息

Civil Engineering, Bursa Uludag University, Bursa, 16059, Turkey.

出版信息

Sci Rep. 2025 Jul 1;15(1):20584. doi: 10.1038/s41598-025-06943-5.

Abstract

This study examines how novice driving behaviors affect highway flow and collision potential. Driving behaviors of candidates receiving driving training are analyzed for the first time using drone images, in-car footage, and image processing methods. Driving parameters such as standstill distance [CC0], acceleration/deceleration, perception-reaction times, and speeds are extracted using image processing and field observation. These novice driver (ND) parameters are then incorporated into the VISSIM traffic micro-simulation model as a separate driving behavior dataset. The impact of NDs on traffic under different compositions and the resulting crash potential is then assessed. Safety analysis using the Collision Potential Index (CPI) reveal a 35% increase in CPI with only 10% novice drivers, while mobility analysis indicates a 14% average speed decrease with 50% ND traffic composition. Interestingly, a decrease in CPI values is observed when the ND ratio increases to 40% and 50%, which is explained by the more cautious behavior of experienced drivers and a decrease in traffic flow speed. The use of real-world data increases the authenticity and reliability of the study. The findings contribute to the understanding of the risks associated with novice drivers, highlighting the need for effective safety measures. This study provides valuable insights for policy makers and traffic safety experts to reduce the threats posed by inexperienced drivers and regulate the behavior of experienced drivers.

摘要

本研究考察新手驾驶行为如何影响高速公路交通流量和碰撞可能性。首次使用无人机图像、车内录像和图像处理方法,对接受驾驶培训的学员的驾驶行为进行分析。利用图像处理和现场观察提取诸如静止距离[CC0]、加速/减速、感知反应时间和速度等驾驶参数。然后,将这些新手驾驶员(ND)参数作为一个单独的驾驶行为数据集纳入VISSIM交通微观模拟模型。接着评估不同组成情况下新手驾驶员对交通的影响以及由此产生的碰撞可能性。使用碰撞可能性指数(CPI)进行的安全分析显示,仅10%的新手驾驶员就会使CPI增加35%,而流动性分析表明,当新手驾驶员交通组成比例达到50%时,平均速度会下降14%。有趣的是,当新手驾驶员比例增加到40%和50%时,观察到CPI值下降,这可以用经验丰富的驾驶员行为更加谨慎以及交通流速度下降来解释。使用实际数据提高了研究的真实性和可靠性。这些发现有助于理解与新手驾驶员相关的风险,突出了采取有效安全措施的必要性。本研究为政策制定者和交通安全专家提供了宝贵的见解,以减少无经验驾驶员带来的威胁并规范经验丰富驾驶员的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/873f/12216722/3641a6c60660/41598_2025_6943_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验