Suppr超能文献

斯坦福A型主动脉夹层术后肝功能障碍预测模型的建立与验证

Development and validation of a predictive model for postoperative hepatic dysfunction in Stanford type A aortic dissection.

作者信息

Han Xiaotian, Wang Wei, Gu Tianxiang, Shi Enyi

机构信息

Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22126. doi: 10.1038/s41598-025-06024-7.

Abstract

To investigate the risk factors for postoperative hepatic dysfunction (HD) in patients undergoing acute Stanford type A aortic dissection (ATAAD) surgery and to develop an individualized prediction model. We retrospectively analyzed cardiac surgery patients with ATAAD treated at our hospital from January 2020 to March 2024, dividing them into 7:3 training and validation cohorts and grouping them into HD and non-HD categories based on postoperative liver function. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression were used to identify independent predictive factors for postoperative HD, which formed the basis of a nomogram prediction model. We assessed model accuracy, calibration and clinical utility using C-statistics, calibration plots and decision curve analysis (DCA) curves. Internal validation with 1000 Bootstrap resamples was performed to reduce overfitting bias. LASSO and multivariate logistic regression identified key risk factors for HD in ATAAD patients, including chronic kidney disease, preoperative creatinine, international normalized ratio (INR), red blood cell (RBC) transfusion volume, peak intraoperative lactate, aortic cross-clamping time greater than 99 min, and reoperation. Based on these factors, a nomogram prediction model was successfully developed. The Hosmer-Leme show test yielded a p value of 0.952, indicating a good model fit. The area under the curve (AUC) values in the training and validation cohorts were 0.856 (95% CI 0.777-0.936) and 0.958 (95% CI 0.915-1) respectively, indicating good discriminatory power. The calibration curve shows that the bias corrected line is close to the ideal line. The DCA curve indicates that the use of the nomogram provides greater net clinical benefit. The AUC values before and after Bootstrap validation were 0.860 (95% CI 0.795-0.924) and 0.858 (95% CI 0.795-0.924), respectively, reflecting stable model performance and minimal risk of overfitting. The internally validated prognostic nomogram demonstrates excellent discriminative power, calibration, and clinical utility for predicting the risk of HD in patients who have undergone ATAAD surgery. This allows for an individualized evaluation and the optimization of clinical outcomes.

摘要

探讨急性Stanford A型主动脉夹层(ATAAD)手术患者术后肝功能障碍(HD)的危险因素,并建立个体化预测模型。我们回顾性分析了2020年1月至2024年3月在我院接受治疗的ATAAD心脏手术患者,将他们按7:3分为训练队列和验证队列,并根据术后肝功能将其分为HD组和非HD组。采用最小绝对收缩和选择算子(LASSO)及多因素逻辑回归分析确定术后HD的独立预测因素,以此构建列线图预测模型的基础。我们使用C统计量、校准图和决策曲线分析(DCA)曲线评估模型的准确性、校准度和临床实用性。进行1000次Bootstrap重采样的内部验证以减少过度拟合偏差。LASSO和多因素逻辑回归分析确定了ATAAD患者HD的关键危险因素,包括慢性肾脏病、术前肌酐、国际标准化比值(INR)、红细胞(RBC)输注量、术中乳酸峰值、主动脉阻断时间大于99分钟以及再次手术。基于这些因素,成功构建了列线图预测模型。Hosmer-Leme show检验的p值为0.952,表明模型拟合良好。训练队列和验证队列中的曲线下面积(AUC)值分别为0.856(95%CI 0.777-0.936)和0.958(95%CI 0.915-1),表明具有良好的鉴别能力。校准曲线显示偏差校正线接近理想线。DCA曲线表明使用列线图可提供更大的净临床效益。Bootstrap验证前后的AUC值分别为0.860(95%CI 0.795-0.924)和0.858(95%CI 0.795-0.924),反映出模型性能稳定且过度拟合风险最小。经过内部验证的预后列线图在预测ATAAD手术患者HD风险方面具有出色的鉴别能力、校准度和临床实用性。这有助于进行个体化评估并优化临床结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验