具有改进的浣熊优化算法的区块链赋能深度学习模型,用于可持续医疗保健疾病检测与分类。

Blockchain enabled deep learning model with modified coati optimization for sustainable healthcare disease detection and classification.

作者信息

Mohamed Heba G, Alrowais Fadwa, Al-Wesabi Fahd N, Duhayyim Mesfer Al, Hilal Anwer Mustafa, Motwakel Abdelwahed

机构信息

Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 1;15(1):21058. doi: 10.1038/s41598-025-06578-6.

Abstract

The growing number of patients and the emergence of new symptoms and diseases make health monitoring and assessment increasingly complex for medical staff and hospitals. The execution of big and heterogeneous data gathered by medical sensors and the necessity of patient classification and disease analysis have become serious problems for various health-based sensing applications. The significant features of healthcare are the privacy of medical details and the accuracy of disease identification. One of the key benefits of the healthcare system is the ability to predict diseases early. Recently, the progress of artificial intelligence (AI) in the healthcare system has been a high priority. Machine learning (ML) and deep learning (DL) effectively make analyses and strategic decisions for the healthcare system. This manuscript proposes a Modified Coati Optimization Driven Blockchain for Healthcare Disease Detection and Classification (MCODBC-HDDC) method. The presented MCOBC-HDDC method provides an efficient and accurate disease diagnosis, utilizing a system that depends on DL techniques. Initially, the MCODBC-HDDC method incorporates BC technology to ensure secure data sharing and management, providing a decentralized and tamper-proof environment for patient data. In the data preprocessing stage, the MCODBC-HDDC model employs Z-score normalization to standardize the data and improve performance. For the optimal subset of features, the spotted hyena optimization algorithm (SHOA) model is used. Furthermore, the attention bidirectional gated recurrent unit (ABiGRU) method is implemented for disease detection and classification. Finally, the hyperparameter selection of the ABiGRU method is performed by utilizing the modified coati optimization algorithm (MCOA) method. The experimental analysis of the MCODBC-HDDC approach is examined under the HD dataset. The performance validation of the MCODBC-HDDC approach portrayed a superior accuracy value of 97.36% over existing models.

摘要

患者数量的不断增加以及新症状和疾病的出现,使得医护人员和医院的健康监测与评估变得日益复杂。医疗传感器收集的大量异构数据的处理以及患者分类和疾病分析的必要性,已成为各种基于健康的传感应用中的严重问题。医疗保健的显著特点是医疗细节的隐私性和疾病识别的准确性。医疗保健系统的关键优势之一是能够早期预测疾病。最近,人工智能(AI)在医疗保健系统中的进展一直是高度优先事项。机器学习(ML)和深度学习(DL)有效地为医疗保健系统进行分析和战略决策。本文提出了一种用于医疗疾病检测和分类的改进的浣熊优化驱动区块链(MCODBC-HDDC)方法。所提出的MCOBC-HDDC方法利用依赖于DL技术的系统提供高效准确的疾病诊断。最初,MCODBC-HDDC方法采用区块链技术来确保数据的安全共享和管理,为患者数据提供一个去中心化且防篡改的环境。在数据预处理阶段,MCODBC-HDDC模型采用Z分数归一化来标准化数据并提高性能。对于特征的最优子集,使用斑点鬣狗优化算法(SHOA)模型。此外,实施注意力双向门控循环单元(ABiGRU)方法进行疾病检测和分类。最后,通过使用改进的浣熊优化算法(MCOA)方法对ABiGRU方法进行超参数选择。在HD数据集下对MCODBC-HDDC方法进行了实验分析。MCODBC-HDDC方法的性能验证显示出比现有模型更高的准确率,达到了97.36%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索