Suppr超能文献

使用机器学习分类器有效预测冠心病的存在。

Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers.

机构信息

Department of Creative Technologies, Air University Islamabad, Islamabad 44000, Pakistan.

Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2022 Sep 23;22(19):7227. doi: 10.3390/s22197227.

Abstract

Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction model, various feature combinations and well-known classification algorithms were used. We achieved 95% accuracy with gradient boosted trees and multilayer perceptron in the heart disease prediction model. The Random Forest gives a better performance level in heart disease prediction, with an accuracy level of 96%.

摘要

冠心病是全球主要死亡原因之一。预测心脏病是临床数据分析领域最具挑战性的任务之一。机器学习 (ML) 在决策支持和基于全球医疗保健部门生成的数据进行预测方面对诊断有帮助。我们也已经注意到 ML 技术在疾病预测的医学领域中的应用。在这方面,已经使用 ML 分类器展示了许多关于心脏病预测的研究。在本文中,我们使用了十一种机器学习分类器来识别关键特征,从而提高了心脏病的预测能力。为了引入预测模型,使用了各种特征组合和著名的分类算法。在心脏病预测模型中,梯度提升树和多层感知机达到了 95%的准确率。随机森林在心脏病预测中具有更好的性能水平,准确率达到 96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef8/9573101/33e8c4d38a9a/sensors-22-07227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验