文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种具有隐私保护人工智能优化功能的可解释联邦区块链框架,用于保护医疗保健数据安全。

An explainable federated blockchain framework with privacy-preserving AI optimization for securing healthcare data.

作者信息

Bhardwaj Tanisha, Sumangali K

机构信息

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, 632014, Vellore, Tamilnadu, India.

出版信息

Sci Rep. 2025 Jul 1;15(1):21799. doi: 10.1038/s41598-025-04083-4.


DOI:10.1038/s41598-025-04083-4
PMID:40595873
Abstract

With the rapid growth of healthcare data and the need for secure, interpretable, and decentralized machine learning systems, Federated Learning (FL) has emerged as a promising solution. However, FL models often face challenges regarding privacy preservation, transparency, and resistance to adversarial attacks. To address these limitations, this paper proposes the Privacy Preserving Federated Blockchain Explainable Artificial Intelligence Optimization (PPFBXAIO) framework, which integrates blockchain technology, Explainable AI (XAI), and optimization techniques to ensure privacy, traceability, and robustness in FL-based systems. PPFBXAIO employs Secure Hash Algorithm 256 (SHA-256) for blockchain-backed secure model updates, Min-Max normalization for feature scaling, and the Levy Grasshopper Optimization Algorithm (LGOA) for optimal feature selection and federated model tuning. The Entropy Deep Belief Network (EDBN) is used as the classifier to enhance classification accuracy and detect attacks. XAI tools like SHAP are utilized to improve model interpretability. Experimental validation was conducted using the Heart Disease dataset from Kaggle and the Wisconsin Breast Cancer dataset. Results showed that PPFBXAIO achieved 95.07% accuracy, 95.44% precision, 96.54% recall, 95.98% F1 score, and reduced training loss by 4.93% for Breast Cancer Wisconsin and achieved 93.07% accuracy, 91.19% precision, 95.39% recall, 93.24% F1 score for Heart Disease dataset. Proposed system has reduced latency by 81 ms, and improved throughput by 109 transactions per second for 100 rounds as compared to traditional models like FedAvg, FL-MPC, FL-RAEC, and PEFL. These results highlight the framework's superior performance, privacy preservation, and practical applicability in decentralized healthcare AI systems.

摘要

随着医疗保健数据的快速增长以及对安全、可解释和去中心化机器学习系统的需求,联邦学习(FL)已成为一种有前途的解决方案。然而,FL模型在隐私保护、透明度和对抗攻击抗性方面常常面临挑战。为解决这些局限性,本文提出了隐私保护联邦区块链可解释人工智能优化(PPFBXAIO)框架,该框架集成了区块链技术、可解释人工智能(XAI)和优化技术,以确保基于FL的系统中的隐私、可追溯性和鲁棒性。PPFBXAIO采用安全哈希算法256(SHA-256)进行区块链支持的安全模型更新,采用最小-最大归一化进行特征缩放,并采用 Levy 蚱蜢优化算法(LGOA)进行最优特征选择和联邦模型调优。熵深度信念网络(EDBN)用作分类器以提高分类准确率并检测攻击。利用 SHAP 等 XAI 工具来提高模型的可解释性。使用来自 Kaggle 的心脏病数据集和威斯康星乳腺癌数据集进行了实验验证。结果表明,对于威斯康星乳腺癌,PPFBXAIO 的准确率达到 95.07%,精确率达到 95.44%,召回率达到 96.54%,F1 分数达到 95.98%,训练损失降低了 4.93%;对于心脏病数据集,PPFBXAIO 的准确率达到 93.07%,精确率达到 91.19%,召回率达到 95.39%,F1 分数达到 93.24%。与 FedAvg、FL-MPC、FL-RAEC 和 PEFL 等传统模型相比,所提出的系统在 100 轮中延迟降低了 81 毫秒,吞吐量提高了每秒 109 笔交易。这些结果突出了该框架在去中心化医疗保健人工智能系统中的卓越性能、隐私保护和实际适用性。

相似文献

[1]
An explainable federated blockchain framework with privacy-preserving AI optimization for securing healthcare data.

Sci Rep. 2025-7-1

[2]
XAI-XGBoost: an innovative explainable intrusion detection approach for securing internet of medical things systems.

Sci Rep. 2025-7-1

[3]
Blockchain enabled deep learning model with modified coati optimization for sustainable healthcare disease detection and classification.

Sci Rep. 2025-7-1

[4]
A federated learning-based privacy-preserving image processing framework for brain tumor detection from CT scans.

Sci Rep. 2025-7-2

[5]
Blockchain Integration With Digital Technology and the Future of Health Care Ecosystems: Systematic Review.

J Med Internet Res. 2021-11-2

[6]
Leveraging self attention driven gated recurrent unit with crocodile optimization algorithm for cyberattack detection using federated learning framework.

Sci Rep. 2025-7-3

[7]
Synergizing advanced algorithm of explainable artificial intelligence with hybrid model for enhanced brain tumor detection in healthcare.

Sci Rep. 2025-7-1

[8]
Two stage malware detection model in internet of vehicles (IoV) using deep learning-based explainable artificial intelligence with optimization algorithms.

Sci Rep. 2025-7-1

[9]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[10]
Privacy-Preserving Technology Using Federated Learning and Blockchain in Protecting against Adversarial Attacks for Retinal Imaging.

Ophthalmology. 2025-4

本文引用的文献

[1]
An analysis of decipherable red blood cell abnormality detection under federated environment leveraging XAI incorporated deep learning.

Sci Rep. 2024-10-27

[2]
Federated learning: Overview, strategies, applications, tools and future directions.

Heliyon. 2024-9-20

[3]
HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications.

Sensors (Basel). 2023-7-28

[4]
A Review of the Role of Artificial Intelligence in Healthcare.

J Pers Med. 2023-6-5

[5]
Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications.

Sci Rep. 2023-1-4

[6]
Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues.

Cluster Comput. 2022-8-17

[7]
A Novel Hybrid Trustworthy Decentralized Authentication and Data Preservation Model for Digital Healthcare IoT Based CPS.

Sensors (Basel). 2022-2-13

[8]
An Industrial IoT-Based Blockchain-Enabled Secure Searchable Encryption Approach for Healthcare Systems Using Neural Network.

Sensors (Basel). 2022-1-12

[9]
The role of artificial intelligence in healthcare: a structured literature review.

BMC Med Inform Decis Mak. 2021-4-10

[10]
DBN Structure Design Algorithm for Different Datasets Based on Information Entropy and Reconstruction Error.

Entropy (Basel). 2018-12-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索