Bhardwaj Tanisha, Sumangali K
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, 632014, Vellore, Tamilnadu, India.
Sci Rep. 2025 Jul 1;15(1):21799. doi: 10.1038/s41598-025-04083-4.
With the rapid growth of healthcare data and the need for secure, interpretable, and decentralized machine learning systems, Federated Learning (FL) has emerged as a promising solution. However, FL models often face challenges regarding privacy preservation, transparency, and resistance to adversarial attacks. To address these limitations, this paper proposes the Privacy Preserving Federated Blockchain Explainable Artificial Intelligence Optimization (PPFBXAIO) framework, which integrates blockchain technology, Explainable AI (XAI), and optimization techniques to ensure privacy, traceability, and robustness in FL-based systems. PPFBXAIO employs Secure Hash Algorithm 256 (SHA-256) for blockchain-backed secure model updates, Min-Max normalization for feature scaling, and the Levy Grasshopper Optimization Algorithm (LGOA) for optimal feature selection and federated model tuning. The Entropy Deep Belief Network (EDBN) is used as the classifier to enhance classification accuracy and detect attacks. XAI tools like SHAP are utilized to improve model interpretability. Experimental validation was conducted using the Heart Disease dataset from Kaggle and the Wisconsin Breast Cancer dataset. Results showed that PPFBXAIO achieved 95.07% accuracy, 95.44% precision, 96.54% recall, 95.98% F1 score, and reduced training loss by 4.93% for Breast Cancer Wisconsin and achieved 93.07% accuracy, 91.19% precision, 95.39% recall, 93.24% F1 score for Heart Disease dataset. Proposed system has reduced latency by 81 ms, and improved throughput by 109 transactions per second for 100 rounds as compared to traditional models like FedAvg, FL-MPC, FL-RAEC, and PEFL. These results highlight the framework's superior performance, privacy preservation, and practical applicability in decentralized healthcare AI systems.
随着医疗保健数据的快速增长以及对安全、可解释和去中心化机器学习系统的需求,联邦学习(FL)已成为一种有前途的解决方案。然而,FL模型在隐私保护、透明度和对抗攻击抗性方面常常面临挑战。为解决这些局限性,本文提出了隐私保护联邦区块链可解释人工智能优化(PPFBXAIO)框架,该框架集成了区块链技术、可解释人工智能(XAI)和优化技术,以确保基于FL的系统中的隐私、可追溯性和鲁棒性。PPFBXAIO采用安全哈希算法256(SHA-256)进行区块链支持的安全模型更新,采用最小-最大归一化进行特征缩放,并采用 Levy 蚱蜢优化算法(LGOA)进行最优特征选择和联邦模型调优。熵深度信念网络(EDBN)用作分类器以提高分类准确率并检测攻击。利用 SHAP 等 XAI 工具来提高模型的可解释性。使用来自 Kaggle 的心脏病数据集和威斯康星乳腺癌数据集进行了实验验证。结果表明,对于威斯康星乳腺癌,PPFBXAIO 的准确率达到 95.07%,精确率达到 95.44%,召回率达到 96.54%,F1 分数达到 95.98%,训练损失降低了 4.93%;对于心脏病数据集,PPFBXAIO 的准确率达到 93.07%,精确率达到 91.19%,召回率达到 95.39%,F1 分数达到 93.24%。与 FedAvg、FL-MPC、FL-RAEC 和 PEFL 等传统模型相比,所提出的系统在 100 轮中延迟降低了 81 毫秒,吞吐量提高了每秒 109 笔交易。这些结果突出了该框架在去中心化医疗保健人工智能系统中的卓越性能、隐私保护和实际适用性。
J Med Internet Res. 2021-11-2
J Pers Med. 2023-6-5
BMC Med Inform Decis Mak. 2021-4-10