Chen Lu, Wang Sha, Wang Jinwei, Xu Bei, Tan Jia, Xia Xiaobo
Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.
Sci Rep. 2025 Jul 1;15(1):22021. doi: 10.1038/s41598-025-05107-9.
Thyroid-associated ophthalmopathy (TAO) is an autoimmune disorder affecting the orbit, potentially resulting in blindness. This study focused on the role of hypoxia in its pathogenesis through integrative bioinformatics and experimental validation. Five differentially expressed genes associated with hypoxia (HRDEGs) were identified via Gene Expression Omnibus (GEO) database mining: AGO2, CP, DIO3, PSMD14, WTIP. qPCR and immunohistochemistry confirmed reduced expressions of AGO2 and PSMD14, and elevated expression of DIO3 in TAO orbital tissues. Hypoxia exposure aggravated the above dysregulation and promoted proliferation and adipogenesis of orbital fibroblasts. A predictive model was developed using four machine learning algorithms and validated for its effectiveness in diagnosing TAO and assessing disease severity. Functional enrichment revealed hypoxia response, apoptosis, and programmed cell death. Protein-protein interaction and mRNA interaction networks of HRDEGs were established, predicting transcription factors, microRNAs, RNA-binding proteins, and drugs interacting with them. Immune infiltration analysis demonstrated the accumulation of Type 17 T helper cells and CD56 dim natural killer cells in high-risk patients, correlating with DIO3 upregulation and AGO2 downregulation. Flow cytometry confirmed the enrichment of these two cell types in the orbital tissue of TAO. This study revealed hypoxia-immunity crosstalk in TAO pathogenesis, providing a validated predictive model and molecular targets for precision interventions.
甲状腺相关眼病(TAO)是一种影响眼眶的自身免疫性疾病,有可能导致失明。本研究通过整合生物信息学和实验验证,聚焦于缺氧在其发病机制中的作用。通过挖掘基因表达综合数据库(GEO),鉴定出五个与缺氧相关的差异表达基因(HRDEGs):AGO2、CP、DIO3、PSMD14、WTIP。qPCR和免疫组织化学证实,TAO眼眶组织中AGO2和PSMD14表达降低,DIO3表达升高。缺氧暴露加剧了上述失调,并促进了眼眶成纤维细胞的增殖和脂肪生成。使用四种机器学习算法建立了一个预测模型,并验证了其在诊断TAO和评估疾病严重程度方面的有效性。功能富集分析显示了缺氧反应、凋亡和程序性细胞死亡。建立了HRDEGs的蛋白质-蛋白质相互作用和mRNA相互作用网络,预测了与它们相互作用的转录因子、微小RNA、RNA结合蛋白和药物。免疫浸润分析表明,高危患者中17型辅助性T细胞和CD56dim自然杀伤细胞积累,与DIO3上调和AGO2下调相关。流式细胞术证实了这两种细胞类型在TAO眼眶组织中的富集。本研究揭示了TAO发病机制中的缺氧-免疫相互作用,为精准干预提供了经过验证的预测模型和分子靶点。