Suppr超能文献

一种基于机器学习的框架,用于利用血清肝功能测试和高敏C反应蛋白预测代谢综合征。

A machine learning-based framework for predicting metabolic syndrome using serum liver function tests and high-sensitivity C-reactive protein.

作者信息

Behkamal Bahareh, Asgharian Rezae Fatemeh, Mansoori Amin, Kolahi Ahari Rana, Mahmoudi Shamsabad Sobhan, Esmaeilian Mohammad Reza, Ferns Gordon, Saberi Mohammad Reza, Esmaily Habibollah, Ghayour-Mobarhan Majid

机构信息

Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.

Student Research Committee, Mashhad University of medical sciences, Mashhad, Iran.

出版信息

Sci Rep. 2025 Jul 1;15(1):21725. doi: 10.1038/s41598-025-06723-1.

Abstract

Metabolic Syndrome (MetS) comprises a clustering of conditions that significantly increase the risk of heart disease, stroke, and diabetes. Timely detection and intervention are crucial in preventing severe health outcomes. In this study, we implemented a machine learning (ML)-based predictive framework to identify MetS using serum liver function tests-Alanine Transaminase (ALT), Aspartate Aminotransferase (AST), Direct Bilirubin (BIL.D), Total Bilirubin (BIL.T)-and high-sensitivity C-reactive protein (hs-CRP). The framework integrated diverse ML algorithms, including Linear Regression (LR), Decision Trees (DT), Support Vector Machine (SVM), Random Forest (RF), Balanced Bagging (BG), Gradient Boosting (GB), and Convolutional Neural Networks (CNNs). This framework is designed to develop a robust, scalable, and efficient predictive tool. We evaluated our approach on a large-scale cohort comprising 9,704 participants from the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study, spanning 2010-2020. After preprocessing, a final dataset of 8,972 individuals (3,442 with MetS and 5,530 without) was used for model development and validation. Among the tested models, GB and CNN demonstrated superior performance, achieving specificity rates of 77% and 83%, respectively. The Gradient Boosting model achieved the lowest error rate of 27%, indicating robust predictive capability. Additionally, SHAP analysis identified hs-CRP, BIL.D, ALT, and sex as the most influential predictors of MetS. These findings suggest that leveraging liver function biomarkers and hs-CRP within an automated ML pipeline can facilitate early, non-invasive detection of MetS, supporting clinical decision-making and risk stratification efforts in healthcare systems.

摘要

代谢综合征(MetS)由一系列病症组成,这些病症会显著增加患心脏病、中风和糖尿病的风险。及时检测和干预对于预防严重的健康后果至关重要。在本研究中,我们实施了一个基于机器学习(ML)的预测框架,使用血清肝功能测试指标——丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、直接胆红素(BIL.D)、总胆红素(BIL.T)以及高敏C反应蛋白(hs-CRP)来识别代谢综合征。该框架整合了多种ML算法,包括线性回归(LR)、决策树(DT)、支持向量机(SVM)、随机森林(RF)、平衡装袋法(BG)、梯度提升(GB)和卷积神经网络(CNN)。此框架旨在开发一个强大、可扩展且高效的预测工具。我们在一个大规模队列中评估了我们的方法,该队列由来自2010年至2020年马什哈德中风与心脏动脉粥样硬化疾病(MASHAD)研究的9704名参与者组成。经过预处理后,最终数据集包含8972名个体(3442名患有代谢综合征,5530名未患),用于模型开发和验证。在测试的模型中,GB和CNN表现出卓越的性能,特异性率分别达到77%和83%。梯度提升模型实现了最低27%的错误率,表明其具有强大的预测能力。此外,SHAP分析确定hs-CRP、BIL.D、ALT和性别是代谢综合征最具影响力的预测因素。这些发现表明,在自动化ML流程中利用肝功能生物标志物和hs-CRP可以促进代谢综合征的早期非侵入性检测,为医疗系统中的临床决策和风险分层工作提供支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验