Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain.
Modeling, Identification and Control Engineering Laboratory (MICELab), Institut d'Informàtica i Aplicacions, Universitat de Girona, Girona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
Comput Biol Med. 2024 Mar;171:108154. doi: 10.1016/j.compbiomed.2024.108154. Epub 2024 Feb 19.
Hybrid automated insulin delivery systems enhance postprandial glucose control in type 1 diabetes, however, meal announcements are burdensome. To overcome this, we propose a machine learning-based automated meal detection approach; METHODS:: A heterogeneous ensemble method combining an artificial neural network, random forest, and logistic regression was employed. Trained and tested on data from two in-silico cohorts comprising 20 and 47 patients. It accounted for various meal sizes (moderate to high) and glucose appearance rates (slow and rapid absorbing). To produce an optimal prediction model, three ensemble configurations were used: logical AND, majority voting, and logical OR. In addition to the in-silico data, the proposed meal detector was also trained and tested using the OhioT1DM dataset. Finally, the meal detector is combined with a bolus insulin compensation scheme; RESULTS:: The ensemble majority voting obtained the best meal detector results for both the in-silico and OhioT1DM cohorts with a sensitivity of 77%, 94%, 61%, precision of 96%, 89%, 72%, F1-score of 85%, 91%, 66%, and with false positives per day values of 0.05, 0.19, 0.17, respectively. Automatic meal detection with insulin compensation has been performed in open-loop insulin therapy using the AND ensemble, chosen for its lower false positive rate. Time-in-range has significantly increased 10.48% and 16.03%, time above range was reduced by 5.16% and 11.85%, with a minimal time below range increase of 0.35% and 2.69% for both in-silico cohorts, respectively, compared to the results without a meal detector; CONCLUSION:: To increase the overall accuracy and robustness of the predictions, this ensemble methodology aims to take advantage of each base model's strengths. All of the results point to the potential application of the proposed meal detector as a separate module for the detection of meals in automated insulin delivery systems to achieve improved glycemic control.
混合式自动化胰岛素输送系统可改善 1 型糖尿病患者的餐后血糖控制,但餐食提示较为繁琐。为解决这一问题,我们提出了一种基于机器学习的自动化餐食检测方法。
采用一种异质集成方法,结合人工神经网络、随机森林和逻辑回归。在由 20 名和 47 名患者组成的两个虚拟队列的数据上进行训练和测试。它考虑了各种餐食大小(中到大)和葡萄糖出现率(慢吸收和快吸收)。为了生成最佳预测模型,使用了三种集成配置:逻辑与、多数投票和逻辑或。除了虚拟数据外,还使用俄亥俄州 T1DM 数据集对所提出的餐食检测器进行了训练和测试。最后,将餐食检测器与推注胰岛素补偿方案相结合。
对于虚拟和俄亥俄州 T1DM 队列,集成多数投票获得了最佳的餐食检测结果,其灵敏度分别为 77%、94%、61%,精度分别为 96%、89%、72%,F1 评分为 85%、91%、66%,每日假阳性率分别为 0.05、0.19、0.17。使用 AND 集成进行自动餐食检测和胰岛素补偿,已在开环胰岛素治疗中进行,因其假阳性率较低。与无餐食检测器相比,两个虚拟队列的时间在目标范围内显著增加了 10.48%和 16.03%,时间超过范围减少了 5.16%和 11.85%,时间低于范围增加了 0.35%和 2.69%。
为了提高预测的整体准确性和稳健性,该集成方法旨在利用每个基础模型的优势。所有结果都表明,所提出的餐食检测器作为自动化胰岛素输送系统中检测餐食的独立模块具有潜在应用,可实现血糖控制的改善。