文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度卷积神经网络在对比增强CT图像中确定口腔癌和肉瘤。

Determination of the oral carcinoma and sarcoma in contrast enhanced CT images using deep convolutional neural networks.

作者信息

Warin Kritsasith, Limprasert Wasit, Paipongna Teerawat, Chaowchuen Sitthi, Vicharueang Sothana

机构信息

Faculty of Dentistry, Thammasat University, Khlong Luang, Pathum Thani, Thailand.

College of Interdisciplinary Studies, Thammasat University, Khlong Luang, Pathum Thani, Thailand.

出版信息

Sci Rep. 2025 Jul 1;15(1):21672. doi: 10.1038/s41598-025-06318-w.


DOI:10.1038/s41598-025-06318-w
PMID:40596521
Abstract

Oral cancer is a hazardous disease and a major cause of morbidity and mortality worldwide. The purpose of this study was to develop the deep convolutional neural networks (CNN)-based multiclass classification and object detection models for distinguishing and detection of oral carcinoma and sarcoma in contrast-enhanced CT images. This study included 3,259 slices of CT images of oral cancer cases from the cancer hospital and two regional hospitals from 2016 to 2020. Multiclass classification models were constructed using DenseNet-169, ResNet-50, EfficientNet-B0, ConvNeXt-Base, and ViT-Base-Patch16-224 to accurately differentiate between oral carcinoma and sarcoma. Additionally, multiclass object detection models, including Faster R-CNN, YOLOv8, and YOLOv11, were designed to autonomously identify and localize lesions by placing bounding boxes on CT images. Performance evaluation on a test dataset showed that the best classification model achieved an accuracy of 0.97, while the best detection models yielded a mean average precision (mAP) of 0.87. In conclusion, the CNN-based multiclass models have a great promise for accurately determining and distinguishing oral carcinoma and sarcoma in CT imaging, potentially enhancing early detection and informing treatment strategies.

摘要

口腔癌是一种危险疾病,也是全球发病和死亡的主要原因。本研究的目的是开发基于深度卷积神经网络(CNN)的多类分类和目标检测模型,用于在增强CT图像中区分和检测口腔癌和肉瘤。本研究纳入了2016年至2020年来自癌症医院和两家地区医院的3259例口腔癌病例的CT图像切片。使用DenseNet-169、ResNet-50、EfficientNet-B0、ConvNeXt-Base和ViT-Base-Patch16-224构建多类分类模型,以准确区分口腔癌和肉瘤。此外,还设计了包括Faster R-CNN、YOLOv8和YOLOv11在内的多类目标检测模型,通过在CT图像上放置边界框来自动识别和定位病变。在测试数据集上的性能评估表明,最佳分类模型的准确率达到0.97,而最佳检测模型的平均精度均值(mAP)为0.87。总之,基于CNN的多类模型在准确确定和区分CT成像中的口腔癌和肉瘤方面具有很大前景,有可能提高早期检测并为治疗策略提供依据。

相似文献

[1]
Determination of the oral carcinoma and sarcoma in contrast enhanced CT images using deep convolutional neural networks.

Sci Rep. 2025-7-1

[2]
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks.

BMC Med Imaging. 2021-4-13

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
Automatic segmentation and classification of Papanicolaou-stained cells and dataset for oral cancer detection.

Comput Biol Med. 2024-9

[5]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[6]
Effective Feature Extraction for Knee Osteoarthritis Detection on X-ray Images Using Convolutional Neural Networks.

Curr Med Imaging. 2025-6-20

[7]
Comparative analysis of convolutional neural networks and transformer architectures for breast cancer histopathological image classification.

Front Med (Lausanne). 2025-6-17

[8]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[9]
Optimizing convolutional neural networks for Chronic Obstructive Pulmonary Disease detection in clinical computed tomography imaging.

Comput Biol Med. 2025-2

[10]
Facial Emotion Recognition of 16 Distinct Emotions From Smartphone Videos: Comparative Study of Machine Learning and Human Performance.

J Med Internet Res. 2025-7-2

本文引用的文献

[1]
Deep convolutional neural network for automatic segmentation and classification of jaw tumors in contrast-enhanced computed tomography images.

Int J Oral Maxillofac Surg. 2025-4

[2]
The Discovery of Oral Cancer Prognostic Factor Ranking Using Association Rule Mining.

Eur J Dent. 2024-7

[3]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[4]
Deep learning in oral cancer- a systematic review.

BMC Oral Health. 2024-2-10

[5]
A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma.

Clin Oral Investig. 2023-12-27

[6]
Early diagnosis of oral cancer using a hybrid arrangement of deep belief networkand combined group teaching algorithm.

Sci Rep. 2023-12-12

[7]
Deep learning for diagnosis of head and neck cancers through radiographic data: a systematic review and meta-analysis.

Oral Radiol. 2024-1

[8]
The use of artificial intelligence tools in cancer detection compared to the traditional diagnostic imaging methods: An overview of the systematic reviews.

PLoS One. 2023

[9]
Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN.

Comput Methods Programs Biomed. 2021-8

[10]
Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.

Radiol Artif Intell. 2020-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索