Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Comput Methods Programs Biomed. 2021 Aug;207:106172. doi: 10.1016/j.cmpb.2021.106172. Epub 2021 May 16.
PURPOSE: Esophageal cancer is a common malignant tumor in life, which seriously affects human health. In order to reduce the work intensity of doctors and improve detection accuracy, we proposed esophageal cancer detection using deep learning. The characteristics of deep learning: association and structure, activity and experience, essence and variation, migration and application, value and evaluation. METHOD: The improved Faster RCNN esophageal cancer detection in this paper introduces the online hard example mining (OHEM) mechanism into the system, and the experiment used 1520 gastrointestinal CT images from 421 patients. Then, we compare the overall performance of Inception-v2, Faster RCNN, and improved Faster RCNN through F-1 measure, mean average precision (mAP), and detection time. RESULTS: The experiment shows that the overall performance of the improved Faster RCNN is higher than the other two networks. The F-1 measure of our method reaches 95.71%, the mAP reaches 92.15%, and the detection time per CT is only 5.3s. CONCLUSION: Through comparative analysis on the esophageal cancer image data set, the experimental results show that the introduction of online hard example mining mechanism in the Faster RCNN algorithm can improve the detection accuracy to a certain extent.
目的:食管癌是生活中常见的恶性肿瘤,严重影响人类健康。为了降低医生的工作强度,提高检测准确率,我们提出了利用深度学习进行食管癌检测。深度学习的特点:关联性和结构性、活性和经验性、本质和变异性、迁移和应用、价值和评估。
方法:本文提出的改进型 Faster RCNN 食管癌检测方法将在线硬例挖掘(OHEM)机制引入系统,实验使用了 421 名患者的 1520 张胃肠道 CT 图像。然后,通过 F-1 度量、平均准确率(mAP)和检测时间来比较 Inception-v2、Faster RCNN 和改进型 Faster RCNN 的整体性能。
结果:实验表明,改进型 Faster RCNN 的整体性能高于其他两种网络。我们的方法的 F-1 度量达到 95.71%,mAP 达到 92.15%,每张 CT 图像的检测时间仅为 5.3s。
结论:通过对食管癌图像数据集进行对比分析,实验结果表明,在 Faster RCNN 算法中引入在线硬例挖掘机制可以在一定程度上提高检测准确率。
Comput Methods Programs Biomed. 2021-8
Comput Methods Programs Biomed. 2020-2
Technol Health Care. 2023
J Xray Sci Technol. 2022
World J Gastrointest Oncol. 2025-5-15
Chin Med J (Engl). 2023-11-20
BMC Med Inform Decis Mak. 2023-7-17
Plants (Basel). 2022-12-30
Comput Intell Neurosci. 2022