文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进的 Faster RCNN 对胃肠道 CT 图像进行分类的食管癌检测。

Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN.

机构信息

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

出版信息

Comput Methods Programs Biomed. 2021 Aug;207:106172. doi: 10.1016/j.cmpb.2021.106172. Epub 2021 May 16.


DOI:10.1016/j.cmpb.2021.106172
PMID:34049268
Abstract

PURPOSE: Esophageal cancer is a common malignant tumor in life, which seriously affects human health. In order to reduce the work intensity of doctors and improve detection accuracy, we proposed esophageal cancer detection using deep learning. The characteristics of deep learning: association and structure, activity and experience, essence and variation, migration and application, value and evaluation. METHOD: The improved Faster RCNN esophageal cancer detection in this paper introduces the online hard example mining (OHEM) mechanism into the system, and the experiment used 1520 gastrointestinal CT images from 421 patients. Then, we compare the overall performance of Inception-v2, Faster RCNN, and improved Faster RCNN through F-1 measure, mean average precision (mAP), and detection time. RESULTS: The experiment shows that the overall performance of the improved Faster RCNN is higher than the other two networks. The F-1 measure of our method reaches 95.71%, the mAP reaches 92.15%, and the detection time per CT is only 5.3s. CONCLUSION: Through comparative analysis on the esophageal cancer image data set, the experimental results show that the introduction of online hard example mining mechanism in the Faster RCNN algorithm can improve the detection accuracy to a certain extent.

摘要

目的:食管癌是生活中常见的恶性肿瘤,严重影响人类健康。为了降低医生的工作强度,提高检测准确率,我们提出了利用深度学习进行食管癌检测。深度学习的特点:关联性和结构性、活性和经验性、本质和变异性、迁移和应用、价值和评估。

方法:本文提出的改进型 Faster RCNN 食管癌检测方法将在线硬例挖掘(OHEM)机制引入系统,实验使用了 421 名患者的 1520 张胃肠道 CT 图像。然后,通过 F-1 度量、平均准确率(mAP)和检测时间来比较 Inception-v2、Faster RCNN 和改进型 Faster RCNN 的整体性能。

结果:实验表明,改进型 Faster RCNN 的整体性能高于其他两种网络。我们的方法的 F-1 度量达到 95.71%,mAP 达到 92.15%,每张 CT 图像的检测时间仅为 5.3s。

结论:通过对食管癌图像数据集进行对比分析,实验结果表明,在 Faster RCNN 算法中引入在线硬例挖掘机制可以在一定程度上提高检测准确率。

相似文献

[1]
Esophageal cancer detection based on classification of gastrointestinal CT images using improved Faster RCNN.

Comput Methods Programs Biomed. 2021-8

[2]
Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks.

Med Phys. 2017-7-18

[3]
Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination.

J Healthc Eng. 2021

[4]
An appearance quality classification method for Auricularia auricula based on deep learning.

Sci Rep. 2024-7-5

[5]
Two stage residual CNN for texture denoising and structure enhancement on low dose CT image.

Comput Methods Programs Biomed. 2020-2

[6]
Evaluation of deep learning methods for early gastric cancer detection using gastroscopic images.

Technol Health Care. 2023

[7]
Spark plug defects detection based on improved Faster-RCNN algorithm.

J Xray Sci Technol. 2022

[8]
NF-RCNN: Heart localization and right ventricle wall motion abnormality detection in cardiac MRI.

Phys Med. 2020-1-23

[9]
Optimizing time prediction and error classification in early melanoma detection using a hybrid RCNN-LSTM model.

Microsc Res Tech. 2024-8

[10]
Mass Detection and Segmentation in Digital Breast Tomosynthesis Using 3D-Mask Region-Based Convolutional Neural Network: A Comparative Analysis.

Front Mol Biosci. 2020-11-11

引用本文的文献

[1]
Optimizing Esophageal Cancer Diagnosis with Computer-Aided Detection by YOLO Models Combined with Hyperspectral Imaging.

Diagnostics (Basel). 2025-7-2

[2]
Determination of the oral carcinoma and sarcoma in contrast enhanced CT images using deep convolutional neural networks.

Sci Rep. 2025-7-1

[3]
Research status and progress of deep learning in automatic esophageal cancer detection.

World J Gastrointest Oncol. 2025-5-15

[4]
Diagnosis of primary clear cell carcinoma of the liver based on Faster region-based convolutional neural network.

Chin Med J (Engl). 2023-11-20

[5]
Machine learning applications for early detection of esophageal cancer: a systematic review.

BMC Med Inform Decis Mak. 2023-7-17

[6]
Clinical-Pathological Characteristics of Adenosquamous Esophageal Carcinoma: A Propensity-Score-Matching Study.

J Pers Med. 2023-3-3

[7]
Apple-Net: A Model Based on Improved YOLOv5 to Detect the Apple Leaf Diseases.

Plants (Basel). 2022-12-30

[8]
Atom Search Optimization with the Deep Transfer Learning-Driven Esophageal Cancer Classification Model.

Comput Intell Neurosci. 2022

[9]
High-Resolution Computer Tomography Image Features of Lungs for Patients with Type 2 Diabetes under the Faster-Region Recurrent Convolutional Neural Network Algorithm.

Comput Math Methods Med. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索