Miyashita Rikuya, Hironaka Shiori, Shudo Kazuyuki
Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
Academic Center for Computing and Media Studies, Kyoto University, Kyoto, 606-8501, Japan.
Sci Rep. 2025 Jul 1;15(1):20729. doi: 10.1038/s41598-025-07869-8.
Hypergraphs are generalizations of simple graphs that allow for the representation of complex group interactions beyond pairwise relationships. Clustering coefficients quantify local link density in networks and have been widely studied for both simple graphs and hypergraphs. However, existing clustering coefficients for hypergraphs treat each hyperedge as a distinct unit rather than a collection of potentially related node pairs, failing to capture intra-hyperedge pairwise relationships and incorrectly assigning zero values to nodes with meaningful clustering patterns. We propose a novel clustering coefficient that addresses this fundamental limitation by transforming hypergraphs into weighted graphs, where edge weights reflect relationship strength between nodes based on hyperedge connections. Our definition satisfies three key conditions: values in the range [0,1], consistency with simple graph clustering coefficients, and effective capture of intra-hyperedge pairwise relationships-a capability absent from existing approaches. Theoretical evaluation on higher-order motifs demonstrates that our definition correctly assigns values to motifs where existing definitions fail (motifs III, IV-a, IV-b of order 3), while empirical evaluation on three real-world datasets shows similar overall clustering tendencies with more detailed measurements, especially for hypergraphs with larger hyperedges. The proposed clustering coefficient enables accurate quantification of local density in complex networks, revealing structural characteristics missed by existing definitions in systems where group membership implies connections between members, such as social communities and co-authorship networks.
超图是简单图的推广,它允许表示超出成对关系的复杂群体相互作用。聚类系数量化了网络中的局部链接密度,并且已经在简单图和超图中得到了广泛研究。然而,现有的超图聚类系数将每个超边视为一个不同的单元,而不是潜在相关节点对的集合,未能捕捉超边内的成对关系,并错误地将零值赋给具有有意义聚类模式的节点。我们提出了一种新颖的聚类系数,通过将超图转换为加权图来解决这一基本限制,其中边权重基于超边连接反映节点之间的关系强度。我们的定义满足三个关键条件:值在[0,1]范围内,与简单图聚类系数一致,以及有效捕捉超边内的成对关系——这是现有方法所缺乏的能力。对高阶基序的理论评估表明,我们的定义能正确地为现有定义失败的基序(三阶基序III、IV-a、IV-b)赋值,而对三个真实世界数据集的实证评估显示,在更详细的测量下具有相似的整体聚类趋势,特别是对于具有更大超边的超图。所提出的聚类系数能够准确量化复杂网络中的局部密度,揭示在群体成员身份意味着成员之间存在联系的系统(如社会社区和共同作者网络)中现有定义所遗漏的结构特征。