Suppr超能文献

单纯复形闭包与高阶链接预测。

Simplicial closure and higher-order link prediction.

机构信息

Department of Computer Science, Cornell University, Ithaca, NY 14853.

Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11221-E11230. doi: 10.1073/pnas.1800683115. Epub 2018 Nov 9.

Abstract

Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once-for example, communication within a group rather than person to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental difference from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

摘要

网络通过使用一种两两相互作用的模型为复杂系统的建模提供了一种强大的形式化方法。但是,这些系统中的许多结构都涉及到不止两个节点同时发生的相互作用,例如,一个群体内部的交流而不是人与人之间的交流,一个团队内部的协作而不是两个合著者之间的协作,或者一组分子之间的生物相互作用而不是仅仅两个分子之间的相互作用。这种高阶相互作用无处不在,但对其进行实证研究的关注有限,对这些结构可能存在的组织原则也知之甚少。在这里,我们研究了 19 个数据集的时间演变,明确考虑了高阶相互作用。我们表明,我们的数据集具有丰富多样的结构,但来自相同系统类型的数据集具有一致的高阶结构模式。此外,我们发现联系强度和边密度是高阶组织的竞争正指标,这些趋势在涉及不同数量节点的相互作用中是一致的。为了系统地推进对这种高阶结构的理论研究,我们提出了高阶链接预测作为评估模型和算法的基准问题,以预测高阶结构。我们发现,与传统的两两链接预测相比,新交互的出现预测中,局部信息而非远程信息的作用更大。

相似文献

1
Simplicial closure and higher-order link prediction.单纯复形闭包与高阶链接预测。
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11221-E11230. doi: 10.1073/pnas.1800683115. Epub 2018 Nov 9.
2
Higher-order homophily on simplicial complexes.单纯复形上的高阶同配性。
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2315931121. doi: 10.1073/pnas.2315931121. Epub 2024 Mar 12.
5
Simplicial Activity Driven Model.单纯形活动驱动模型。
Phys Rev Lett. 2018 Nov 30;121(22):228301. doi: 10.1103/PhysRevLett.121.228301.
9
Weighted growing simplicial complexes.加权生长单纯复形。
Phys Rev E. 2017 Jun;95(6-1):062301. doi: 10.1103/PhysRevE.95.062301. Epub 2017 Jun 12.

引用本文的文献

1
Emergence of cooperation promoted by higher-order strategy updates.高阶策略更新促进合作的出现。
PLoS Comput Biol. 2025 Aug 4;21(8):e1012891. doi: 10.1371/journal.pcbi.1012891. eCollection 2025 Aug.
3
Higher-order temporal network prediction and interpretation.高阶时间网络预测与解释。
PLoS One. 2025 May 29;20(5):e0323753. doi: 10.1371/journal.pone.0323753. eCollection 2025.
5
Hypergraph reconstruction from dynamics.基于动力学的超图重构
Nat Commun. 2025 Mar 19;16(1):2691. doi: 10.1038/s41467-025-57664-2.
7
Ambiguities in neural-network-based hyperedge prediction.基于神经网络的超边预测中的模糊性。
J Appl Comput Topol. 2024 Oct;8(5):1333-1361. doi: 10.1007/s41468-024-00172-x. Epub 2024 May 7.
8
The simpliciality of higher-order networks.高阶网络的单纯性。
EPJ Data Sci. 2024;13. doi: 10.1140/epjds/s13688-024-00458-1. Epub 2024 Mar 7.
9
Inconsistency among evaluation metrics in link prediction.链接预测中评估指标之间的不一致性。
PNAS Nexus. 2024 Nov 6;3(11):pgae498. doi: 10.1093/pnasnexus/pgae498. eCollection 2024 Nov.

本文引用的文献

1
Predicting perturbation patterns from the topology of biological networks.从生物网络的拓扑结构预测扰动模式。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6375-E6383. doi: 10.1073/pnas.1720589115. Epub 2018 Jun 20.
4
Random walks on simplicial complexes and harmonics.单纯复形上的随机游走与调和函数。
Random Struct Algorithms. 2016 Sep;49(2):379-405. doi: 10.1002/rsa.20645. Epub 2016 Mar 7.
6
Higher-order organization of complex networks.复杂网络的高阶组织
Science. 2016 Jul 8;353(6295):163-6. doi: 10.1126/science.aad9029.
7
Representing higher-order dependencies in networks.表示网络中的高阶依赖关系。
Sci Adv. 2016 May 20;2(5):e1600028. doi: 10.1126/sciadv.1600028. eCollection 2016 May.
10
Structural diversity in social contagion.社会传播中的结构多样性。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6. doi: 10.1073/pnas.1116502109. Epub 2012 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验