Suppr超能文献

1.5T磁共振直线加速器用于肺癌自适应放疗临床实践中克服挑战的步骤。

Steps towards overcoming challenges in clinical practice at 1.5T MR-Linac for lung cancer adaptive radiotherapy.

作者信息

Liu Min, Yang Feng, Tang Bin, Xin Xin, Liao Xiongfei, Liu Mingzhe, Liu Yanhua, Li Jie, Wang Xianliang, Orlandini Lucia Clara

机构信息

College of Computer Science and Cyber Security, Chengdu University of Technology, No.1, Section 3, Erxianqiao East Road, Chengdu, 610051, China.

Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China.

出版信息

BMC Cancer. 2025 Jul 1;25(1):1034. doi: 10.1186/s12885-025-14428-x.

Abstract

BACKGROUND

The MR-guided adaptive radiotherapy (MRgART) workflow at the 1.5 T Unity MR-Linac relies on synthetic CT (sCT) generated through bulk density assignment. Although sCT-based dose calculations are the standard approach, it is well known that their accuracy can be compromised in lung tumors due to the high dose gradients surrounding the targets. This study investigates clinical cases to determine whether these challenges affect all lung targets or if, for a subset partially located in high-density dose regions, the sCT calculations performed in the Unity clinical workflow are sufficiently accurate, supporting their routine clinical application.

METHODS

Forty-eight lung cancer patients undergoing stereotactic body radiotherapy at Unity MR-Linac, were included in this study. Patients were stratified into two groups based on target position: [Formula: see text] group including targets attached to thoracic wall or mediastinum, and [Formula: see text] (group isolated pulmonary target), including targets entirely within the lung parenchyma and surrounded by air-filled lung tissue. The reference treatment plans ([Formula: see text]) were optimised on the simulation CT using inverse-planning intensity modulated radiation therapy (IMRT) with the Monaco treatment planning system to deliver 50 Gy in 5 fractions. [Formula: see text] included all contour information needed to generate the sCT through bulk electron density assignment, the standard procedure for Unity MR-Linac. To evaluate the dosimetric accuracy of sCT-based dose calculations, a second plan ([Formula: see text]) was created by recalculating [Formula: see text] on the sCT derived from the reference CT. The sCT was generated using the MRgART routine, which assigns mean ED values to all contoured structures. Dose-volume histograms were compared between [Formula: see text] and [Formula: see text] for targets and organs at risk (OARs), with additional evaluation of tumor control probability, and normal tissue complication probability. Dose distributions were further evaluated using global gamma analysis with 3%/3 mm and 2%/2 mm criteria.

RESULTS

Significant differences () in key dosimetric parameters ([Formula: see text], [Formula: see text], [Formula: see text]) were observed between [Formula: see text] and [Formula: see text] in the [Formula: see text] group, with percentage differences reaching up to 3.49%. Conversely, in [Formula: see text], percentage differences were less than 1% and not statistically significant (). For OARs, no significant differences () were observed in either group, except for the lungs minus the gross tumor volume (lungs-GTV), where percentage differences remained below 1.5%. Radiobiological modelling yielded consistent results, confirming the dosimetric findings. Gamma analysis showed consistent dose distributions, with a global pass rate above 95% for 3%/3 mm criteria and above 90% for 2%/2 mm criteria.

CONCLUSIONS

This study demonstrates that sCT-based dose calculations are feasible and reliable for pulmonary targets attached to the thoracic wall or mediastinum, supporting their routine integration into MRgART workflows on the Unity MR-Linac. However, for isolated pulmonary targets, deviations should be considered when implementing sCT-based planning in clinical practice.

摘要

背景

1.5T Unity MR直线加速器的磁共振引导自适应放疗(MRgART)工作流程依赖于通过体素密度赋值生成的合成CT(sCT)。尽管基于sCT的剂量计算是标准方法,但众所周知,由于靶区周围的高剂量梯度,其准确性在肺部肿瘤中可能会受到影响。本研究调查临床病例,以确定这些挑战是否会影响所有肺部靶区,或者对于部分位于高密度剂量区域的子集,Unity临床工作流程中执行的sCT计算是否足够准确,以支持其常规临床应用。

方法

本研究纳入了48例在Unity MR直线加速器接受立体定向体部放疗的肺癌患者。根据靶区位置将患者分为两组:[公式:见原文]组包括附着于胸壁或纵隔的靶区,[公式:见原文](孤立肺靶区组)包括完全位于肺实质内且被充气肺组织包围的靶区。参考治疗计划([公式:见原文])在模拟CT上使用Monaco治疗计划系统通过逆向计划调强放疗(IMRT)进行优化,分5次给予50Gy剂量。[公式:见原文]包括通过体素电子密度赋值生成sCT所需的所有轮廓信息,这是Unity MR直线加速器的标准程序。为了评估基于sCT的剂量计算的剂量学准确性,通过在从参考CT导出的sCT上重新计算[公式:见原文]来创建第二个计划([公式:见原文])。使用MRgART程序生成sCT,该程序将平均电子密度值分配给所有轮廓化结构。比较[公式:见原文]和[公式:见原文]中靶区和危及器官(OARs)的剂量体积直方图,并额外评估肿瘤控制概率和正常组织并发症概率。使用3%/3mm和2%/2mm标准的全局伽马分析进一步评估剂量分布。

结果

在[公式:见原文]组中,观察到[公式:见原文]和[公式:见原文]之间关键剂量学参数([公式:见原文]、[公式:见原文]、[公式:见原文])存在显著差异(),百分比差异高达3.49%。相反,在[公式:见原文]中,百分比差异小于1%且无统计学意义()。对于OARs,除了肺减去大体肿瘤体积(肺-GTV)外,两组均未观察到显著差异(),其中百分比差异保持在1.5%以下。放射生物学建模得出一致结果,证实了剂量学发现。伽马分析显示剂量分布一致,3%/3mm标准的全局通过率高于95%,2%/2mm标准的全局通过率高于90%。

结论

本研究表明,基于sCT的剂量计算对于附着于胸壁或纵隔的肺部靶区是可行且可靠的,支持将其常规整合到Unity MR直线加速器的MRgART工作流程中。然而,对于孤立的肺靶区,在临床实践中实施基于sCT的计划时应考虑偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f1/12211906/8c2178d7778b/12885_2025_14428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验