文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测糖尿病性黄斑水肿抗VEGF治疗疗效的集成机器学习算法

Ensemble machine learning algorithm for anti-VEGF treatment efficacy prediction in diabetic macular edema.

作者信息

Fang Yu, Lin Jianwei, Xie Peiwen, Zhu Huishan, Ng Tsz Kin, Zhang Guihua

机构信息

Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.

出版信息

BMC Ophthalmol. 2025 Jul 1;25(1):352. doi: 10.1186/s12886-025-04181-x.


DOI:10.1186/s12886-025-04181-x
PMID:40597853
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12211286/
Abstract

BACKGROUND: Diabetic macular edema (DME) is a leading cause of vision loss in diabetes, with variable responses to anti-vascular endothelial growth factor (anti-VEGF) therapy in DME patients. Current diagnosis relies on optical coherence tomography (OCT) imaging, but manual interpretation is limited. This study aims to integrate 3D-OCT features and clinical variables to develop machine learning (ML) models for predicting anti-VEGF treatment outcomes. METHODS AND ANALYSIS: Medical records and 3D-OCT images of DME patients were included in this study. The 3D-OCT images were categorized into good and poor visual response groups based on the best corrected visual acuity at one month after three consecutive anti-VEGF treatments. The images and clinical features were subjected to assessment by 11 automatic classification models for anti-VEGF treatment responses in DME patients. The top 3 performing models were selected to build an ensemble model, and evaluated in the test dataset. RESULTS: This study included 142 patients with 3D-OCT images of 170 eyes. A total of 20 image and clinical features were selected for the model construction and test in DME patients responded to anti-VEGF therapy. Adaptive boosting (AdaBoost), GradientBoosting, and light gradient boosting machine (LightGBM) exhibited better performances than the remaining 8 models. The ensemble model constructed achieved a sensitivity of 0.941, specificity of 0.882, and accuracy of 0.912 in the test dataset, with an area under the receiver operating characteristic curve of 0.976. CONCLUSION: This study established an ensemble ML algorithm based on 3D-OCT images and clinical features for automatic detection of treatment responses to anti-VEGF treatment in DME patients to predict the efficacy of anti-VEGF treatment in DME patients and assist clinicians in optimal treatment decisions.

摘要

背景:糖尿病性黄斑水肿(DME)是糖尿病患者视力丧失的主要原因,DME患者对抗血管内皮生长因子(anti-VEGF)治疗的反应各不相同。目前的诊断依赖于光学相干断层扫描(OCT)成像,但人工解读存在局限性。本研究旨在整合三维OCT特征和临床变量,以开发用于预测anti-VEGF治疗结果的机器学习(ML)模型。 方法与分析:本研究纳入了DME患者的病历和三维OCT图像。根据连续三次anti-VEGF治疗后1个月时的最佳矫正视力,将三维OCT图像分为视觉反应良好组和视觉反应较差组。图像和临床特征由11种用于DME患者anti-VEGF治疗反应的自动分类模型进行评估。选择表现最佳的前3个模型构建一个集成模型,并在测试数据集中进行评估。 结果:本研究纳入了142例患者,其170只眼睛有三维OCT图像。共选择了20个图像和临床特征用于构建模型,并在对anti-VEGF治疗有反应的DME患者中进行测试。自适应增强(AdaBoost)、梯度提升和轻梯度提升机(LightGBM)的表现优于其余8个模型。构建的集成模型在测试数据集中的灵敏度为0.941,特异性为0.882,准确率为0.912,受试者工作特征曲线下面积为0.976。 结论:本研究基于三维OCT图像和临床特征建立了一种集成ML算法,用于自动检测DME患者对anti-VEGF治疗的反应,以预测DME患者anti-VEGF治疗的疗效,并协助临床医生做出最佳治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/12211286/b80f934ab913/12886_2025_4181_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/12211286/ce3f42cb5fe9/12886_2025_4181_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/12211286/b80f934ab913/12886_2025_4181_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/12211286/ce3f42cb5fe9/12886_2025_4181_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/12211286/b80f934ab913/12886_2025_4181_Fig2_HTML.jpg

相似文献

[1]
Ensemble machine learning algorithm for anti-VEGF treatment efficacy prediction in diabetic macular edema.

BMC Ophthalmol. 2025-7-1

[2]
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.

Cochrane Database Syst Rev. 2017-6-22

[3]
Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema.

Cochrane Database Syst Rev. 2018-4-18

[4]
Hispanic Ethnicity and Optical Coherence Tomography-based Biomarkers as Predictive Factors of Diabetic Macular Edema Refractory to Bevacizumab.

Ophthalmic Surg Lasers Imaging Retina. 2025-6

[5]
Evaluating the effect of vitreomacular interface abnormalities on anti-vascular endothelial growth factor treatment outcomes in diabetic macular edema by optical coherence tomography: A systematic review and meta-analysis.

Photodiagnosis Photodyn Ther. 2023-6

[6]
Comparative efficacy of anti-vascular endothelial growth factor on diabetic macular edema diagnosed with different patterns of optical coherence tomography: A network meta-analysis.

PLoS One. 2024

[7]
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.

Cochrane Database Syst Rev. 2023-6-27

[8]
Real-world clinical insights and aqueous humor biomarker analysis of diabetic macular edema subtypes classified by OCT following intravitreal injections.

BMC Ophthalmol. 2025-7-1

[9]
Anti-VEGF drugs compared with laser photocoagulation for the treatment of diabetic retinopathy: a systematic review and meta-analysis.

Health Technol Assess. 2024-12-11

[10]
Anti-VEGF drugs compared with laser photocoagulation for the treatment of proliferative diabetic retinopathy: a systematic review and individual participant data meta-analysis.

Health Technol Assess. 2025-4-2

本文引用的文献

[1]
Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis.

Diabetes Care. 2024-2-1

[2]
Current Treatments for Diabetic Macular Edema.

Int J Mol Sci. 2023-5-31

[3]
Prevalence and clinical implications of subretinal fluid in retinal diseases: a real-world cohort study.

BMJ Open Ophthalmol. 2023-2

[4]
Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy.

Neural Regen Res. 2023-5

[5]
Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images.

J Clin Med. 2022-5-19

[6]
The Fundus Structural and Functional Predictions of DME Patients After Anti-VEGF Treatments.

Front Endocrinol (Lausanne). 2022

[7]
Deep Learning Prediction of Response to Anti-VEGF among Diabetic Macular Edema Patients: Treatment Response Analyzer System (TRAS).

Diagnostics (Basel). 2022-1-26

[8]
IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.

Diabetes Res Clin Pract. 2022-1

[9]
Focus on external limiting membrane and ellipsoid zone in diabetic macular edema.

Indian J Ophthalmol. 2021-11

[10]
Ellipsoid Zone Integrity and Visual Acuity Changes during Diabetic Macular Edema Therapy: A Longitudinal Study.

J Diabetes Res. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索