Fang Yu, Lin Jianwei, Xie Peiwen, Zhu Huishan, Ng Tsz Kin, Zhang Guihua
Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
BMC Ophthalmol. 2025 Jul 1;25(1):352. doi: 10.1186/s12886-025-04181-x.
BACKGROUND: Diabetic macular edema (DME) is a leading cause of vision loss in diabetes, with variable responses to anti-vascular endothelial growth factor (anti-VEGF) therapy in DME patients. Current diagnosis relies on optical coherence tomography (OCT) imaging, but manual interpretation is limited. This study aims to integrate 3D-OCT features and clinical variables to develop machine learning (ML) models for predicting anti-VEGF treatment outcomes. METHODS AND ANALYSIS: Medical records and 3D-OCT images of DME patients were included in this study. The 3D-OCT images were categorized into good and poor visual response groups based on the best corrected visual acuity at one month after three consecutive anti-VEGF treatments. The images and clinical features were subjected to assessment by 11 automatic classification models for anti-VEGF treatment responses in DME patients. The top 3 performing models were selected to build an ensemble model, and evaluated in the test dataset. RESULTS: This study included 142 patients with 3D-OCT images of 170 eyes. A total of 20 image and clinical features were selected for the model construction and test in DME patients responded to anti-VEGF therapy. Adaptive boosting (AdaBoost), GradientBoosting, and light gradient boosting machine (LightGBM) exhibited better performances than the remaining 8 models. The ensemble model constructed achieved a sensitivity of 0.941, specificity of 0.882, and accuracy of 0.912 in the test dataset, with an area under the receiver operating characteristic curve of 0.976. CONCLUSION: This study established an ensemble ML algorithm based on 3D-OCT images and clinical features for automatic detection of treatment responses to anti-VEGF treatment in DME patients to predict the efficacy of anti-VEGF treatment in DME patients and assist clinicians in optimal treatment decisions.
背景:糖尿病性黄斑水肿(DME)是糖尿病患者视力丧失的主要原因,DME患者对抗血管内皮生长因子(anti-VEGF)治疗的反应各不相同。目前的诊断依赖于光学相干断层扫描(OCT)成像,但人工解读存在局限性。本研究旨在整合三维OCT特征和临床变量,以开发用于预测anti-VEGF治疗结果的机器学习(ML)模型。 方法与分析:本研究纳入了DME患者的病历和三维OCT图像。根据连续三次anti-VEGF治疗后1个月时的最佳矫正视力,将三维OCT图像分为视觉反应良好组和视觉反应较差组。图像和临床特征由11种用于DME患者anti-VEGF治疗反应的自动分类模型进行评估。选择表现最佳的前3个模型构建一个集成模型,并在测试数据集中进行评估。 结果:本研究纳入了142例患者,其170只眼睛有三维OCT图像。共选择了20个图像和临床特征用于构建模型,并在对anti-VEGF治疗有反应的DME患者中进行测试。自适应增强(AdaBoost)、梯度提升和轻梯度提升机(LightGBM)的表现优于其余8个模型。构建的集成模型在测试数据集中的灵敏度为0.941,特异性为0.882,准确率为0.912,受试者工作特征曲线下面积为0.976。 结论:本研究基于三维OCT图像和临床特征建立了一种集成ML算法,用于自动检测DME患者对anti-VEGF治疗的反应,以预测DME患者anti-VEGF治疗的疗效,并协助临床医生做出最佳治疗决策。
Cochrane Database Syst Rev. 2017-6-22
Cochrane Database Syst Rev. 2018-4-18
Ophthalmic Surg Lasers Imaging Retina. 2025-6
Cochrane Database Syst Rev. 2023-6-27
Int J Mol Sci. 2023-5-31
BMJ Open Ophthalmol. 2023-2
Front Endocrinol (Lausanne). 2022
Diabetes Res Clin Pract. 2022-1
Indian J Ophthalmol. 2021-11