文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于影像组学特征的多机器学习模型预测肌层浸润性膀胱癌的预后

Multi-machine learning model based on radiomics features to predict prognosis of muscle-invasive bladder cancer.

作者信息

Wang Bin, Gong Zijian, Su Peide, Zhen Guanghao, Zeng Tao, Ye Yinquan

机构信息

The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China.

出版信息

BMC Cancer. 2025 Jul 1;25(1):1116. doi: 10.1186/s12885-025-14279-6.


DOI:10.1186/s12885-025-14279-6
PMID:40597924
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12211729/
Abstract

OBJECTIVE: This study aims to construct a survival prognosis prediction model for muscle-invasive bladder cancer based on CT imaging features. MATERIALS AND METHODS: A total of 91 patients with muscle-invasive bladder cancer were sourced from the TCGA and TCIA dataset and were divided into a training group (64 cases) and a validation group (27 cases). Additionally, 54 patients with muscle-invasive bladder cancer were retrospectively collected from our hospital to serve as an external test group; their enhanced CT imaging data were analyzed and processed to identify the most relevant radiomic features. Five distinct machine learning methods were employed to develop the optimal radiomics model, which was then combined with clinical data to create a nomogram model aimed at accurately predicting the overall survival (OS) of patients with muscle-invasive bladder cancer. The model's performance was ultimately assessed using various evaluation methods, including the ROC curve, calibration curve, decision curve, and Kaplan-Meier (KM) analysis. RESULTS: Eight radiomic features were identified for modeling analysis. Among the models evaluated, the Gradient Boosting Machine (GBM) In the prediction of OS performed the best. the 2-year AUCs were 0.859, 95% CI (0.767-0.952) for the training group, 0.850, 95% CI (0.705-0.995) for the validation group, and 0.700, 95% CI (0.520-0.880) for the external test group. The 3-year AUCs were 0.809, 95% CI (0.704-0.913) for the training group, 0.895, 95% CI (0.768-1.000) for the validation group, and 0.730, 95% CI (0.569-0.891) for the external test group. The nomogram model incorporating clinical data achieved superior results, the AUCs for predicting 2-year OS were 0.913 (95% CI: 0.83-0.98) for the training group, 0.86 (95% CI: 0.78-0.96) for the validation group, and 0.778 (95% CI: 0.69-0.94) for the external test group; for predicting 3-year OS, the AUCs were 0.837 (95% CI: 0.83-0.98) for the training group, 0.982 (95% CI: 0.84-1.0) for the validation group, and 0.785 (95% CI: 0.75-0.96) for the external test group. The calibration curve demonstrated excellent calibration of the model, while the decision curve and KM analysis indicated that the model possesses substantial clinical utility. CONCLUSION: The GBM model, based on the radiomic features of enhanced CT imaging, holds significant potential for predicting the prognosis of patients with muscle-invasive bladder cancer. Furthermore, the combined model, which incorporates clinical features, demonstrates enhanced performance and is beneficial for clinical decision-making.

摘要

目的:本研究旨在基于CT成像特征构建肌肉浸润性膀胱癌的生存预后预测模型。 材料与方法:从TCGA和TCIA数据集中选取91例肌肉浸润性膀胱癌患者,分为训练组(64例)和验证组(27例)。另外,回顾性收集我院54例肌肉浸润性膀胱癌患者作为外部测试组;对其增强CT成像数据进行分析处理,以确定最相关的影像组学特征。采用五种不同的机器学习方法构建最佳影像组学模型,然后将其与临床数据相结合创建列线图模型,旨在准确预测肌肉浸润性膀胱癌患者的总生存期(OS)。最终使用包括ROC曲线、校准曲线、决策曲线和Kaplan-Meier(KM)分析在内的各种评估方法对模型性能进行评估。 结果:确定了8个影像组学特征用于建模分析。在评估的模型中,梯度提升机(GBM)在OS预测方面表现最佳。训练组2年AUC为0.859,95%CI(0.767-0.952);验证组为0.850,95%CI(0.705-0.995);外部测试组为0.700,95%CI(0.520-0.880)。训练组3年AUC为0.809,95%CI(0.704-0.913);验证组为0.895,95%CI(0.768-1.000);外部测试组为0.730,95%CI(0.569-0.891)。纳入临床数据的列线图模型取得了更好的结果,训练组预测2年OS的AUC为0.913(95%CI:0.83-0.98),验证组为0.86(95%CI:0.78-0.96),外部测试组为0.778(95%CI:0.69-0.94);预测3年OS的AUC,训练组为0.837(95%CI:0.83-0.98),验证组为0.982(95%CI:0.84-1.0),外部测试组为0.785(95%CI:0.75-0.96)。校准曲线显示模型校准良好,决策曲线和KM分析表明该模型具有较大的临床实用性。 结论:基于增强CT成像的影像组学特征的GBM模型在预测肌肉浸润性膀胱癌患者预后方面具有巨大潜力。此外,结合临床特征的联合模型表现更优,有利于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/6ebf76cf5128/12885_2025_14279_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/162b220e2c7e/12885_2025_14279_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/3d9a3d14917b/12885_2025_14279_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/f7d097bb9d2b/12885_2025_14279_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/b2ba0e5d9735/12885_2025_14279_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/44bbec1fabde/12885_2025_14279_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/9e0cf747ef55/12885_2025_14279_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/6ebf76cf5128/12885_2025_14279_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/162b220e2c7e/12885_2025_14279_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/3d9a3d14917b/12885_2025_14279_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/f7d097bb9d2b/12885_2025_14279_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/b2ba0e5d9735/12885_2025_14279_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/44bbec1fabde/12885_2025_14279_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/9e0cf747ef55/12885_2025_14279_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d958/12211729/6ebf76cf5128/12885_2025_14279_Fig7_HTML.jpg

相似文献

[1]
Multi-machine learning model based on radiomics features to predict prognosis of muscle-invasive bladder cancer.

BMC Cancer. 2025-7-1

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Ultrasound-based radiomic nomogram for predicting the invasive status of breast cancer: a multicenter study.

Eur J Med Res. 2025-7-1

[4]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[5]
Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[6]
A comprehensive study on the radiomic score derived from perineural invasion in gastric cancer and its correlation with the overall survival of patients.

Radiol Med. 2025-4-1

[7]
Multimodal MRI radiomics based on habitat subregions of the tumor microenvironment for predicting risk stratification in glioblastoma.

PLoS One. 2025-6-27

[8]
Machine learning-based brain magnetic resonance imaging radiomics for identifying rapid eye movement sleep behavior disorder in Parkinson's disease patients.

BMC Med Imaging. 2025-7-1

[9]
An Integrative Clinical and Intra- and Peritumoral MRI Radiomics Nomogram for the Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer.

Acad Radiol. 2025-3-4

[10]
Preoperative prediction for early recurrence in patients with pancreatic ductal adenocarcinoma: combining radiomics and abdominal fat analysis.

BMC Med Imaging. 2025-7-1

引用本文的文献

[1]
Prognostic Utility of Combining VI-RADS Scores and CYFRA 21-1 Levels in Bladder Cancer: A Retrospective Single-Center Study.

Curr Oncol. 2025-7-24

本文引用的文献

[1]
SIRI as a biomarker for bladder neoplasm: Utilizing decision curve analysis to evaluate clinical net benefit.

Urol Oncol. 2025-6

[2]
Relationship Between Loss of Y Chromosome and Urologic Cancers: New Future Perspectives.

Cancers (Basel). 2024-11-8

[3]
The mental and emotional status after radical cystectomy and different urinary diversion orthotopic bladder substitution versus external urinary diversion after radical cystectomy: A propensity score-matched study.

Int J Urol. 2024-12

[4]
Radiomics in breast cancer: Current advances and future directions.

Cell Rep Med. 2024-9-17

[5]
Machine learning-based radiomics for predicting outcomes in cervical cancer patients undergoing concurrent chemoradiotherapy.

Comput Biol Med. 2024-7

[6]
Assessing Trifecta and Pentafecta Success Rates between Robot-Assisted vs. Open Radical Cystectomy: A Propensity Score-Matched Analysis.

Cancers (Basel). 2024-3-25

[7]
Elderly and bladder cancer: The role of radical cystectomy and orthotopic urinary diversion.

Urologia. 2024-8

[8]
Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma.

Comput Biol Med. 2024-5

[9]
A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study.

Int J Surg. 2024-5-1

[10]
Deep learning signature based on multiphase enhanced CT for bladder cancer recurrence prediction: a multi-center study.

EClinicalMedicine. 2023-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索